Journal of Bone and Mineral Metabolism

, Volume 36, Issue 6, pp 661–667 | Cite as

Increased calcium uptake and improved trabecular bone properties in intestinal alkaline phosphatase knockout mice

  • Lucas R. BrunEmail author
  • M. Lombarte
  • S. Roma
  • F. Perez
  • J. L. Millán
  • A. Rigalli
Original Article


Previous studies have demonstrated a negative correlation between intestinal alkaline phosphatase (IAP) activity and calcium (Ca) absorption in the gut, as IAP acts as a protective mechanism inhibiting high Ca entry into enterocytes, preventing Ca overload. Here we evaluated Ca absorption and bone properties in knockout mice (KO) completely devoid of duodenal IAP (Akp3 / mice). Female C57BL/6 control mice (WT, n = 7) and KO mice (n = 10) were used to determine Ca absorption in vivo and by in situ isolated duodenal loops followed by histomorphometric analysis of duodenal villi and crypts. Bone mineral density, morphometry, histomorphometry and trabecular connectivity and biomechanical properties were measured on bones. We observed mild atrophy of the villi with lower absorption surface and a significantly higher Ca uptake in KO mice. While no changes were seen in cortical bone, we found better trabecular connectivity and biomechanical properties in the femurs of KO mice compared to WT mice. Our data indicate that IAP KO mice display higher intestinal Ca uptake, which over time appears to correlate with a positive effect on the biomechanical properties of trabecular bone.


Intestinal alkaline phosphatase Bone properties Calcium absorption 



We thank Candela Retamozo, Damián Lescano and Alexia Cornejo for the technical assistance. This work was funded by Grant from CONICET (PIP 112 201501 00619 CO).

Compliance with ethical standards

Conflict of interest

The authors report no conflict of interest.


  1. 1.
    Norman AW (1979) Vitamin D metabolism and calcium absorption. Am J Med 67:989–998CrossRefGoogle Scholar
  2. 2.
    Favus MJ, Bushinsky DA, Leamann J (2006) Regulation of calcium, magnesium and phosphate metabolism. In: Primer on the metabolic bone disease and disorders of mineral metabolism, 6ta edn. American Society for Bone and Mineral ResearchGoogle Scholar
  3. 3.
    Brun LR, Brance ML, Rigalli A (2012) Luminal calcium concentration controls intestinal calcium absorption by modification of intestinal alkaline phosphatase activity. Br J Nutr 108:229–233CrossRefGoogle Scholar
  4. 4.
    Brun LR, Brance ML, Lombarte M, Lupo M, Di Loreto VE, Rigalli A (2014) Regulation of intestinal calcium absorption by luminal calcium content: role of intestinal alkaline phosphatase. Mol Nutr Food Res 58:1451–1546CrossRefGoogle Scholar
  5. 5.
    Narisawa S, Huang L, Iwasaki A, Hasegawa H, Millán JL, Alpers DH (2003) Accelerated fat absorption in intestinal alkaline phosphatase knockout mice. Mol Cell Biol 23:7525–7530CrossRefGoogle Scholar
  6. 6.
    Goldberg RF, Austen WG Jr, Zhang X, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS, Warren HS, Narisawa S, Millán JL, Hodin RA (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105:3551–3556CrossRefGoogle Scholar
  7. 7.
    Malo MS, Alam SN, Mostafa G, Zeller SJ, Johnson PV, Mohammad N, Chen KT, Moss AK, Ramasamy S, Faruqui A, Hodin S, Malo PS, Ebrahimi F, Biswas B, Narisawa S, Millán JL, Warren HS, Kaplan JB, Kitts CL, Hohmann EL, Hodin RA (2010) Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 59:1476–1484CrossRefGoogle Scholar
  8. 8.
    Xie Q, Alpers DH (2000) The two isoenzymes of rat intestinal alkaline phosphatase are products of two distinct genes. Physiol Genom 3:1–8CrossRefGoogle Scholar
  9. 9.
    Narisawa S, Hoylaerts MF, Doctor KS, Fukuda MN, Alpers DH, Millán JL (2007) A novel phosphatase upregulated in Akp3 knockout mice. Am J Physiol Gastrointest Liver Physiol 293:G1068–G1077CrossRefGoogle Scholar
  10. 10.
    Strom M, Krisinger J, DeLuca HF (1991) Isolation of a mRNA that encodes a putative intestinal alkaline phosphatase regulated by 1,25-dihydroxyvitamin D-3. Biochim Biophys Acta 1090:299–304CrossRefGoogle Scholar
  11. 11.
    Brun LR, Traverso A, Rigalli A (2009) Aggregation and inhibition of rat intestinal alkaline phosphatase by high concentrations of calcium. Reversibility of the processes. J Enzyme Inhib Med Chem 24:691–696CrossRefGoogle Scholar
  12. 12.
    Brun LR, Brance ML, Rigalli A, Puche RC (2006) Effect of calcium on rat intestinal alkaline phosphatase activity and molecular aggregation. J Enzyme Inhib Med Chem 21:757–763CrossRefGoogle Scholar
  13. 13.
    Peng J, Brown EM, Hediger MA (2003) Epithelial Ca++ entry channels: transcellular Ca++ transport and beyond. J Physiol 551:729–740CrossRefGoogle Scholar
  14. 14.
    Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH, Willems PH, Bindels RJ (1999) Molecular identification of the apical Ca2+ channel in 1, 25-dihydroxyvitamin D3-responsive epithelia. J Biol Chem 274:8375–8378CrossRefGoogle Scholar
  15. 15.
    Vennekens R, Prenen J, Hoenderop JG, Bindels RJ, Droogmans G, Nilius B (2001) Modulation of the epithelial Ca2+ channel ECaC by extracellular pH. Pflugers Arch 442:237–242CrossRefGoogle Scholar
  16. 16.
    Canadian Council on Animal Care Guidelines (1998). Guide to the care and use of experimental animal, 2nd ednGoogle Scholar
  17. 17.
    Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951CrossRefGoogle Scholar
  18. 18.
    Brance ML, Brun LR, Rigalli A (2009) In situ isolation of the intestinal loop. In: Rigalli A, Di Loreto V (eds) Experimental surgical models in the Laboratory Rat, 1st edn. CRC Press, Taylor & Francis Group, Baco Raton, pp 95–97Google Scholar
  19. 19.
    Brun LR, Brance ML, Lombarte M, Maher C, Di Loreto VE, Rigalli A (2015) Effects of yerba mate (Ilex paraguariensis) on histomorphometry, biomechanics, and densitometry on bones in the rat. Calcif Tissue Int 97:527–534CrossRefGoogle Scholar
  20. 20.
    Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–609CrossRefGoogle Scholar
  21. 21.
    Harrar K, Hamami L (2012) An interconnectivity index for osteoporosis assessment using X-Ray images. J Med Biol Eng 33:569–575CrossRefGoogle Scholar
  22. 22.
    Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608CrossRefGoogle Scholar
  23. 23.
    Stürmer EK, Seidlová-Wuttke D, Sehmisch S, Rack T, Wille J, Frosch KH, Wuttke W, Stürmer KM (2006) Standardized bending and breaking test for the normal and osteoporotic metaphyseal tibias of the rat: effect of estradiol, testosterone, and raloxifene. J Bone Miner Res 21:89–96CrossRefGoogle Scholar
  24. 24.
    R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Accessed 29 Nov 2016
  25. 25.
    Matković V, Kostial K, Simonović I, Buzina R, Brodarec A, Nordin BE (1979) Bone status and fractures in two regions of Yugoslavia. Am J Clin Nutr 32:540–549CrossRefGoogle Scholar
  26. 26.
    Bonjour JP, Carrie AL, Ferrari S, Clavien H, Slosman D, Theintz G, Rizzoli R (1997) Calcium-enriched foods and bone mass growth in prepubertal girls: a randomized, double-blind, placebo-controlled trial. J Clin Investig 99:1287–1294CrossRefGoogle Scholar
  27. 27.
    Chan GM, Hoffman K, McMurry M (1994) Effect of dairy products on bone and body composition in pubertal girls. Pediatrics 126:551–556CrossRefGoogle Scholar
  28. 28.
    Ruiz JC, Mandel C, Garabedian M (1995) Effect of spontaneous calcium intake and physical exercise on the vertebral and femoral bone mineral density of children and adolescents. J Bone Min Res 10:675–682CrossRefGoogle Scholar
  29. 29.
    Lee WT, Leung SS, Leung DM, Tsang HS, Lau J, Cheng JC (1995) A randomized double blind controlled calcium supplementation and bone and height acquisition in children. Br J Nutr 74:125–139CrossRefGoogle Scholar
  30. 30.
    Dibba B, Prentice A, Ceesay M, Stirling DM, Cole TJ, Poskitt EM (2000) Effect of calcium supplementation on bone mineral accretion in Gambian children accustomed to a low calcium diet. Am J Clin Nutr 71:544–549CrossRefGoogle Scholar
  31. 31.
    Glastre C, Braillon P, David L, Cochat P, Meunier PJ, Delmas PD (1990) Measurements of bone mineral content of lumbar spine by dual X-ray absorptiometry in normal children: correlation with growth parameters. J Clin Endocrinol Metab 70:1330–1333CrossRefGoogle Scholar
  32. 32.
    Welten DC, Kemper HC, Post GB, Van Mechelen W, Twisk J, Lips P, Teule GJ (1994) Weight bearing activity during youth is a more important factor for peak bone mass than calcium intake. J Bone Min Res 9:1089–1096CrossRefGoogle Scholar
  33. 33.
    Sugimoto T, Kanatani M, Kano J, Kobayashi T, Yamaguchi T, Fukase M, Chihara K (1994) IGF-I mediates the stimulatory effect of high calcium concentration on osteoblastic cell proliferation. Am J Physiol 266:E709–E771CrossRefGoogle Scholar
  34. 34.
    Allen LH, Oddoye EA, Margen S (1979) Protein-induced hypercalciuria: a longer term study. Am J Clin Nutr 32:741–749CrossRefGoogle Scholar
  35. 35.
    Kerstetter JE, Kenny AM, Insogna KL (2011) Dietary protein and skeletal health: a review of recent human research. Curr Opin Lipidol 22:16–20CrossRefGoogle Scholar
  36. 36.
    Kerstetter JE, Svastisalee CM, Caseria DM, Mitnick ME, Insogna KL (2000) A threshold for low-protein-diet-induced elevations in parathyroid hormone. Am J Clin Nutr 72:168–173CrossRefGoogle Scholar

Copyright information

© The Japanese Society for Bone and Mineral Research and Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Lucas R. Brun
    • 1
    • 2
    Email author
  • M. Lombarte
    • 1
    • 2
  • S. Roma
    • 3
  • F. Perez
    • 3
  • J. L. Millán
    • 4
  • A. Rigalli
    • 1
    • 2
    • 5
  1. 1.Bone Biology Laboratory, Cátedra de Química Biológica, Facultad de Ciencias Médicas, School of MedicineRosario National UniversityRosarioArgentina
  2. 2.National Council of Scientific and Technical Research (CONICET)RosarioArgentina
  3. 3.Histology and Embryology Department, School of MedicineRosario National UniversityRosarioArgentina
  4. 4.Sanford Burnham Prebys Medical Discovery InstituteLa JollaUSA
  5. 5.Rosario National University Research CouncilRosarioArgentina

Personalised recommendations