Advertisement

Adaptive fault-tolerant attitude control for a CMG-based underwater vehicle

  • Ruikun Xu
  • Guoyuan TangEmail author
  • Daomin Huang
  • De Xie
  • Lijun Han
Original article
  • 22 Downloads

Abstract

This paper proposes a fault-tolerant control strategy for the attitude control problem of a CMG-based underwater vehicle based on the adaptive sliding mode control method and Lyapunov stability theory. First, a fault-tolerant control model is presented for the quaternion-based attitude kinematic equations combined with a pyramid control moment gyroscope (CMG) system. Second, considering the momentum singularity and input saturation constraint problem, adaptive control method is inspired to estimate the model uncertainties and actuator failures under some basic assumptions. Subsequently, the proposed controller is derived from backstepping-based design techniques and its feasibility is complemented by the remarks. Finally, its efficiency and robustness are illustrated in simulation results to against the uncertainties and disturbances.

Keywords

Underwater vehicle control Control moment gyros Attitude control Fault-tolerant control Adaptive control 

Notes

Acknowledgements

This work is supported by the HUST Interdisciplinary Innovation Team Project, the Fundamental Research Funds for the Central Universities (nos. 2018KFYYXJJ012, 2018JYCXJJ045), the National Natural Science Foundation of China (no. 51979116) and the Innovation Foundation of Maritime Defense Technologies Innovation Center.

References

  1. 1.
    Mony A, Hablani HB, Sukumar S (2016) Steering laws of single gimbal control moment gyros applied to spacecraft manoeuvres and tracking—a comparison. In: 2016 Indian control conference (ICC), IEEE, pp 304–311Google Scholar
  2. 2.
    Thornton B, Ura T, Nose Y, Turnock S (2007) Zero-G class underwater robots: unrestricted attitude control using control moment gyros. IEEE J Ocean Eng 32(3):565–583CrossRefGoogle Scholar
  3. 3.
    Yin S, Luo H, Ding SX (2014) Real-time implementation of faulttolerant control systems with performance optimization. IEEE Trans Ind Electron 61(5):2402–2411CrossRefGoogle Scholar
  4. 4.
    Akrad A, Hilairet M, Diallo D (2011) Design of a fault-tolerant controller based on observers for a PMSM drive. IEEE Trans Ind Electron 58(4):1416–1427CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252CrossRefGoogle Scholar
  6. 6.
    Zhang Y, Jiang J (2002) Active fault-tolerant control system against partial actuator failures. IEE Proc Control Theory Appl 149(1):95–104CrossRefGoogle Scholar
  7. 7.
    Lu P, Van Eykeren L, van Kampen EJ, de Visser C, Chu Q (2015) Double-model adaptive fault detection and diagnosis applied to real flight data. Control Eng Pract 36:39–57CrossRefGoogle Scholar
  8. 8.
    Gao Z, Ding SX (2007) Actuator fault robust estimation and fault-tolerant control for a class of nonlinear descriptor systems. Automatica 43(5):912–920MathSciNetCrossRefGoogle Scholar
  9. 9.
    Yang W, Tong S (2016) Adaptive output feedback fault-tolerant control of switched fuzzy systems. Inf Sci 329:478–490CrossRefGoogle Scholar
  10. 10.
    He Z, Wang J, Liu Z, Zhao J (2016) Sliding mode fault-tolerant control for uncertain time-delay switched systems. Int J Control Autom 9(10):293–302CrossRefGoogle Scholar
  11. 11.
    Chen M, Jiang B, Cui R (2016) Actuator fault-tolerant control of ocean surface vessels with input saturation. Int J Robust Nonlinear Control 26(3):542–564MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lunze J, Steffen T (2006) Control reconfiguration after actuator failures using disturbance decoupling methods. IEEE Trans Autom Control 51(10):1590–1601MathSciNetCrossRefGoogle Scholar
  13. 13.
    Benosman M (2010) A survey of some recent results on nonlinear fault tolerant control. Math Probl Eng 2010(4):242–256MathSciNetzbMATHGoogle Scholar
  14. 14.
    Sharifi F, Mirzaei M, Gordon BW, Zhang Y (2010). Fault tolerant control of a quadrotor UAV using sliding mode control. In: 2010 conference on control and fault-tolerant systems (SysTol), IEEE, pp 239–244Google Scholar
  15. 15.
    Liu L, Wang Z, Zhang H (2016) Adaptive fault-tolerant tracking control for MIMO discrete-time systems via reinforcement learning algorithm with less learning parameters. IEEE Trans Autom Sci Eng 14(1):299–313CrossRefGoogle Scholar
  16. 16.
    Li Y, Sun K, Tong S (2018) Observer-based adaptive fuzzy fault-tolerant optimal control for SISO nonlinear systems. IEEE T Cybern 49(2):649–661CrossRefGoogle Scholar
  17. 17.
    Ye D, Yang X, Su L (2017) Fault-tolerant synchronization control for complex dynamical networks with semi-Markov jump topology. Appl Math Comput 312:36–48MathSciNetzbMATHGoogle Scholar
  18. 18.
    Li T, Zhang Y, Gordon BW (2013) Passive and active nonlinear fault-tolerant control of a quadrotor unmanned aerial vehicle based on the sliding mode control technique. Proc Inst Mech Eng Part I J Syst Control Eng 227(1):12–23CrossRefGoogle Scholar
  19. 19.
    Zhang F, Jin L, Xu S (2017) Fault tolerant attitude control for spacecraft with SGCMGs under actuator partial failure and actuator saturation. Acta Astronaut 132:303–311CrossRefGoogle Scholar
  20. 20.
    Noumi A, Takahashi M (2013) Fault-tolerant attitude control systems for satellite equipped with control moment gyros. In: AIAA guidance, navigation, and control (GNC) conference, MA, USA, pp 2013–5119Google Scholar
  21. 21.
    Hu Q, Xiao B, Friswell MI (2011) Robust fault-tolerant control for spacecraft attitude stabilisation subject to input saturation. IET Contr Theory Appl 5(2):271–282MathSciNetCrossRefGoogle Scholar
  22. 22.
    Xu Z (2014) Research on modeling and motion control method of the underwater vehicle considering the gyroscopic effect. Master’s thesis, Huazhong Univesity of Science and TechnologyGoogle Scholar
  23. 23.
    Prestero TJ (2001) Verifcation of a six-degree of freedom simulation model for the remus autonomous underwater vehicle. Master’s thesis, Massachusetts Institute of TechnologyGoogle Scholar
  24. 24.
    Wie B (2004) Singularity analysis and visualization for single-gimbal control moment gyro systems. J Guid Control Dyn 27(2):271–282MathSciNetCrossRefGoogle Scholar
  25. 25.
    Xu R, Tang G, Xie D, Huang D, Han L (2018) Underactuated tracking control of underwater vehicles using control moment gyros. Int J Adv Robot Syst 15(1):1–8Google Scholar
  26. 26.
    Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, ChichesterGoogle Scholar

Copyright information

© The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2019

Authors and Affiliations

  1. 1.School of Naval Architecture and Ocean EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration (CISSE)ShanghaiChina
  3. 3.Air Force Early Warning AcademyWuhanChina

Personalised recommendations