Composite hovering control of underwater vehicles via variable ballast systems

  • Anyuan Bi
  • Zhengping FengEmail author
Original article


In this paper, a composite hovering control scheme is proposed to improve the disturbance rejection performance of underwater vehicles via variable ballast systems (VBSs). A nonlinear disturbance observer (NDOB) based feedforward controller, which estimates and then compensates the resultant force of external disturbances, is augmented to the conventional proportional plus derivative (PD) based feedback control system. Both stability and convergence of the overall system have been guaranteed via Lyapunov analysis. Simulation results show that the NDOB based composite hovering control system exhibits more desirable performance in disturbance rejection than conventional PD control system.


Underwater vehicles Hovering control Variable ballast systems Nonlinear disturbance observer Lyapunov stability 



  1. 1.
    Fletcher B, Bowen A, Yoerger DR, Whitcomb LL (2009) Journey to the challenger deep: 50 years later with the Nereus hybrid remotely operated vehicle. Mar Technol Soc J 43(5):65–76CrossRefGoogle Scholar
  2. 2.
    Galceran E, Campos R, Palomeras N, Ribas D, Carreras M, Ridao P (2015) Coverage path planning with real-time replanning and surface reconstruction for inspection of three-dimensional underwater structures using autonomous underwater vehicles. J Field Robot 32(7):952–983CrossRefGoogle Scholar
  3. 3.
    Maurya PK, De Sa E, Dubey AC, Dabholkar N, Pascoal A (2016) Autonomous hovering profiler. IEEE/OES Auton Underw Veh (AUV). Google Scholar
  4. 4.
    Khojasteh D, Kamali R (2017) Design and dynamic study of a ROV with application to oil and gas industries of Persian Gulf. Ocean Eng 136:18–30CrossRefGoogle Scholar
  5. 5.
    Gao X, Ding K, Ren YG, Fu WT, Ding ZJ, Zhao SY, Liu BH (2017) Target deployment and retrieval using JIAOLONG manned submersible in the depth of 6600 m in Mariana Trench. China Ocean Eng 31(5):618–623CrossRefGoogle Scholar
  6. 6.
    Yuh J, West M (2001) Underwater robotics. Adv Robot 15(5):609–639CrossRefGoogle Scholar
  7. 7.
    Gilmour B, Niccum G, O’Donnell T (2012) Field resident AUV systems—Chevron’s long-term goal for AUV development. IEEE/OES Auton Underw Veh (AUV). Google Scholar
  8. 8.
    Ridao P, Carreras M, Ribas D, Sanz PJ, Oliver G (2015) Intervention auvs: the next challenge. Ann Rev Control 40:227–241CrossRefGoogle Scholar
  9. 9.
    Font R, García-Peláez J (2013) On a submarine hovering system based on blowing and venting of ballast tanks. Ocean Eng 72:441–447CrossRefGoogle Scholar
  10. 10.
    Steenson LV, Turnock SR, Phillips AB, Harris C, Furlong ME, Rogers E, Wang L, Bodles K, Evans DW (2014) Model predictive control of a hybrid autonomous underwater vehicle with experimental verification. Proc Inst Mech Eng 228(2):166–179Google Scholar
  11. 11.
    Wang L (2009) Model predictive control system design and implementation using MATLAB®. Springer Science and Business Media, BerlinGoogle Scholar
  12. 12.
    Fossen TI, Foss BA (1991) Sliding control of MIMO nonlinear systems. Model Identif Control 12(3):129–138MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tangirala S, Dzielski J (2007) A variable buoyancy control system for a large AUV. IEEE J Ocean Eng 32(4):762–771CrossRefGoogle Scholar
  14. 14.
    Vasilescu I, Detweiler C, Doniec M, Gurdan D, Sosnowski S, Stumpf J, Rus D (2010) Amour v: a hovering energy efficient underwater robot capable of dynamic payloads. Int J Robot Res 29(5):547–570CrossRefGoogle Scholar
  15. 15.
    Woods SA, Bauer RJ, Seto ML (2012) Automated ballast tank control system for autonomous underwater vehicles. IEEE J Ocean Eng 37(4):727–739CrossRefGoogle Scholar
  16. 16.
    Jin S, Kim J, Kim J, Seo T (2015) Six-degree-of-freedom hovering control of an underwater robotic platform with four tilting thrusters via selective switching control. IEEE/ASME Trans Mechatron 20(5):2370–2378CrossRefGoogle Scholar
  17. 17.
    Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, HobokenGoogle Scholar
  18. 18.
    Furlong ME, Paxton D, Stevenson P, Pebody M, Mcphail SD, Perrett J (2012) Autosub long range: a long range deep diving AUV for ocean monitoring. IEEE/OES Auton Underw Veh (AUV). Google Scholar
  19. 19.
    Chen WH, Yang J, Guo L, Li S (2016) Disturbance-observer-based control and related methods—an overview. IEEE Trans Ind Electron 63(2):1083–1095CrossRefGoogle Scholar
  20. 20.
    Chen WH, Ballance DJ, Gawthrop PJ, O’Reilly J (2000) A nonlinear disturbance observer for robotic manipulators. IEEE Trans Ind Electron 47(4):932–938CrossRefGoogle Scholar
  21. 21.
    Chen WH (2004) Disturbance observer based control for nonlinear systems. IEEE/ASME Trans Mechatron 9(4):706–710CrossRefGoogle Scholar
  22. 22.
    Liu Y, Zhao X, Wu D, Li D, Li X (2015) Study on the control methods of a water hydraulic variable ballast system for submersible vehicles. Ocean Eng 108:648–661CrossRefGoogle Scholar
  23. 23.
    Zhao X, Liu Y, Han M, Wu D, Li D (2016) Improving the performance of an AUV hovering system by introducing low-cost flow rate control into water hydraulic variable ballast system. Ocean Eng 125:155–169CrossRefGoogle Scholar
  24. 24.
    Fossen TI (2011) Handbook of marine craft hydrodynamics and motion control. Wiley, HobokenCrossRefGoogle Scholar
  25. 25.
    Strang G (2016) Introduction to linear algebra, vol 5. Wellesley-Cambridge Press, WellesleyzbMATHGoogle Scholar
  26. 26.
    Horn RA, Johnson CR (2012) Matrix analysis, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar

Copyright information

© The Japan Society of Naval Architects and Ocean Engineers (JASNAOE) 2019

Authors and Affiliations

  1. 1.School of Naval Architecture, Ocean and Civil EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Collaborative Innovation Center for Advanced Ship and Dee-Sea ExplorationShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations