Skip to main content

Advertisement

Log in

Characteristics of a fish aggregating device with ocean energy harvester

  • Original article
  • Published:
Journal of Marine Science and Technology Aims and scope Submit manuscript

Abstract

Fishes are easy to be gathered around fish aggregating devices (FADs), which is an environment-friendly artificial ocean infrastructure. This study has proposed and developed a new type of FAD with a current turbine to generate an independent electric power for navigational and environmental sensors, especially at archipelago areas with fishery and aquaculture. A mooring type of FAD with a horizontal axis turbine (HAT) or a vertical axis turbine (VAT) was designed to avoid an unexpected collision with fishes. The characteristics of fluid force on FAD were investigated by numerical and theoretical works assuming steady state in time and the motions of FAD were also examined by experimental works. The proposed FAD can achieve 15% reduction for averaged snap load and 30% for maximum one. The amplitudes of surge, sway and heave motions excited by vortex-induced vibration (VIV) in wave-current conditions can be reduced up to 50%. The current flow around FAD and designed turbine was computed by CFD to estimate hydrodynamic force and vortex field. The numerical results in the fluid force are in overall agreement with the experimental and theoretical ones. Moreover, generated electric power by the optimized turbine was estimated at a typical archipelago area in Indonesia. The first model of FAD without turbine was built up and has been installed in real ocean field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Robert M, Dagorn L, Deneubourg JL, Itano D, Holland K (2012) Size-dependent behavior of tuna in an array of fish aggregating devices (FADs). Mar Biol 159(4):907–914. doi:10.1007/s00227-011-1868-3

    Article  Google Scholar 

  2. Dempster T, Taquet M (2004) Fish aggregation device (FAD) research: gaps in current knowledge and future directions for ecological studies. doi:10.1007/s11160-004-3151-x

  3. Moreno G, Dagorn L, Capello M, Lopez J, Filmalter J, Forget F, Sancristobal I, Holland K (2016) Fish aggregating devices (FADs) as scientific platforms. Fish Res 178:122–129. doi:10.1016/j.fishres.2015.09.021

    Article  Google Scholar 

  4. Westwood A (2008) SeaGen installation moves forward. Renew Energy Focus 9(3):26–27. doi:10.1016/S1471-0846(08)70087-8

    Article  Google Scholar 

  5. Kabir A, Lemongo-tchamba I, Fernandez A (2015) An assessment of available ocean current hydrokinetic energy near the North Carolina shore. Renew Energy 80:301–307. doi:10.1016/j.renene.2015.02.011

    Article  Google Scholar 

  6. King J, Tryfonas T (2009) Tidal stream power technology-state of the art. Oceans 2009-Europe (2):1–8. doi:10.1109/OCEANSE.2009.5278329

  7. Akimoto H, Tanaka K, Uzawa K (2013) A conceptual study of floating axis water current turbine for low-cost energy capturing from river, tide and ocean currents. Renew Energy 57:283–288. doi:10.1016/j.renene.2013.02.002

    Article  Google Scholar 

  8. Jing F, Sheng Q, Zhang L (2014) Experimental research on tidal current vertical axis turbine with variable-pitch blades. Ocean Eng 88:228–241. doi:10.1016/j.oceaneng.2014.06.023

    Article  Google Scholar 

  9. Zhang L, Sq W, Sheng Q, Fm J, Ma Y (2015) The effects of surge motion of the floating platform on hydrodynamics performance of horizontal-axis tidal current turbine. Renew Energy 74:796–802. doi:10.1016/j.renene.2014.09.002

    Article  Google Scholar 

  10. Shirasawa K, Tokunaga K, Iwashita H, Shintake T (2016) Experimental verification of a floating ocean-current turbine with a single rotor for use in Kuroshio currents. Renew Energy 91:189–195. doi:10.1016/j.renene.2016.01.035

    Article  Google Scholar 

  11. Robins PE, Neill SP, Lewis MJ (2014) Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes. Renew Energy 72:311–321. doi:10.1016/j.renene.2014.07.037

    Article  Google Scholar 

  12. Richmond MC, Serkowski JA, Ebner LL, Sick M, Brown RS, Carlson TJ (2014) Quantifying barotrauma risk to juvenile fish during hydro-turbine passage. Fish Res 154:152–164. doi:10.1016/j.fishres.2014.01.007

    Article  Google Scholar 

  13. Shi W, Atlar M, Rosli R, Aktas B, Norman R (2016) Cavitation observations and noise measurements of horizontal axis tidal turbines with biomimetic blade leading-edge designs. Ocean Eng 121:143–155. doi:10.1016/j.oceaneng.2016.05.030

    Article  Google Scholar 

  14. Rourke FO, Boyle F, Reynolds A (2010) Marine current energy devices: current status and possible future applications in Ireland. Renew Sustain Energy Rev 14(3):1026–1036. doi:10.1016/j.rser.2009.11.012

    Article  Google Scholar 

  15. Mutsuda H, Watanabe R, Hirata M, Doi Y, Tanaka Y (2012) Elastic floating unit with piezoelectric device for harvesting ocean wave energy. ASME. doi:10.1115/OMAE2012-83318

  16. Mutsuda H, Watanabe R, Azuma S, Tanaka Y, Doi Y (2013) Ocean power generator using flexible piezoelectric device. ASME. doi:10.1115/OMAE2013-10078

  17. Ahmed MR (2012) Blade sections for wind turbine and tidal current turbine applications-current status and future challenges. Int J Energy Res 36(7):829–844. doi:10.1002/er.2912

    Article  Google Scholar 

  18. Kiho S, Shiono M, Suzuki K (1996) The power generation from tidal currents by darrieus turbine. Renew Energy 9(1–4):1242–1245. doi:10.1016/0960-1481(96)88501-6

    Article  Google Scholar 

  19. Gerakopulos R, Boutilier MSH, Yarusevych S (2010) Aerodynamic characterization of a NACA 0018 airfoil at low reynolds numbers. In: 40th Fluid dynamics conference and exhibit, pp 1–13. doi:10.2514/6.2010-4629

  20. Ardianti A, Mutsuda H, Kawawaki K, Fujii S, Doi Y (2016) Numerical simulation of a strongly interaction between tsunami wave and obstacles using particle based method. In: Proceedings of the 3rd international conference on violent flows, March 2016, Osaka, Japan, pp 9–11

  21. Kavetski D, Fenicia F, Savenije HHG (2010) A flexible multi-model framework for catchment-specific calibration, and application to diverse European catchments. In: Geophysical research abstracts, EGU General Assembly 2010

  22. Autodesk (2016) Autodesk CFD Motion 2016. http://www.autodesk.com/education/free-software/cfd-motion. Accessed 23 Jan 2017

  23. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 8(32):1598–1605

    Article  Google Scholar 

  24. National Association of Fisheries Infrastructure (2003) Guidance of design for ports and fisheries supervised by Fisheries Agency (in Japanese). http://iss.ndl.go.jp/books/R100000002-I000008149689-00. Accessed 5 Mar 2017

  25. Marten D, Wendler J, Pechlivanoglou G, Nayeri CN, Paschereit CO (2013) QBlade: an open source tool for design and simulation of horizontal and vertical axis wind turbines. Int J Emerg Technol Adv Eng 3(3):264–269

    Google Scholar 

  26. Glauert H (1935) Airplane Propellers. In: Aerodynamic theory: a general review of progress under a grant of the guggenheim fund for the promotion of aeronautics, Springer, Berlin, pp 169–360. doi:10.1007/978-3-642-91487-4_3

  27. Koh WXM, Ng EYK (2016) Effects of Reynolds number and different tip loss models on the accuracy of BEM applied to tidal turbines as compared to experiments. Ocean Eng 111:104–115. doi:10.1016/j.oceaneng.2015.10.042

    Article  Google Scholar 

  28. Gasch R, Twele J (2012) Blade geometry according to Betz and Schmitz. In: Gasch R, Twele J (eds) Wind power plants: fundamentals, design, construction and operation, Springer, Berlin, pp 168–207. doi:10.1007/978-3-642-22938-1_5

  29. Chawla JS, Suryanarayanan S, Puranik B, Sheridan J, Falzon BG (2014) Efficiency improvement study for small wind turbines through flow control. Sustain Energy Technol Assess 7:195–208. doi:10.1016/j.seta.2014.06.004

    Google Scholar 

  30. Robert E, Sheldahl PCK (1981) Aerodynamic characteristics of seven sysmmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines. SAND80-2114 (1):1–5. doi:10.1007/13398-014-0173-7.2

  31. Mallon KJ (1992) The NACA 0018-64 aerofoil at low Reynolds numbers with application to vertical axis wind turbines—including turbulence stimulation. In: 11th Australasian fluid mechanics conference, pp 1133–1136

  32. Tummala A, Velamati RK, Sinha DK, Indraja V, Krishna VH (2016) A review on small scale wind turbines. doi:10.1016/j.rser.2015.12.027

  33. Miau J, Liang S, Yu R, Hu C, Leu T, Cheng J, Chen S (2012) Design and test of a vertical-axis wind turbine with pitch control. Appl Mech Mater 225:338–343. doi:10.4028/www.scientific.net/AMM.225.338

    Article  Google Scholar 

  34. Halliday D, Resnick R (2015) Fundamental of physics, 10th edn, vol 1. doi:10.1017/CBO9781107415324.004

  35. Rahmawati S, Mutsuda H, Doi Y, Mutsuda H, Doi Y (2016) Numerical estimation for tidal-current energy resources in Indonesia. In: Proceedings of the twenty-sixth international ocean and polar engineering conference, international society of offshore and polar engineers (ISOPE), Rhodes, 2016, vol 1, pp 519–527

Download references

Acknowledgements

The research work was partially performed by Mr. Syunsuke Yokota and Mr. Syunsuke Hada. The field work was greatly supported by Kunigami fishery cooperative in Okinawa. The research was partly supported by Grants-in-Aid for“Wakasa-wan Energy Research Center”. Mr. Inaba in COAST Co. Ltd. gave us some comments on elastic mooring of FAD. The authors express thanks to all of the supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shade Rahmawati.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmawati, S., Mutsuda, H., Doi, Y. et al. Characteristics of a fish aggregating device with ocean energy harvester. J Mar Sci Technol 23, 435–452 (2018). https://doi.org/10.1007/s00773-017-0482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00773-017-0482-6

Keywords

Navigation