Advertisement

Extern induzierte Blutflussrestriktion als Modell für die periphere arterielle Verschlusskrankheit in Ruhe und unter Belastung

  • J. VogelEmail author
  • D. Niederer
Netzwerk Grundlagenforschung
  • 9 Downloads

Obwohl körperliche Inaktivität und zu wenig körperliche Aktivität bis zu 10 % aller weltweiten Todesfälle verursachen [27], erfüllt etwa ein Drittel der Weltbevölkerung die Mindestanforderungen der körperlichen Aktivität zur Erhaltung der Gesundheit nicht [16, 18]. Die Einführung eines körperlich aktiven Lebensstils kann die Gesamtmortalität verringern, die Lebenserwartung verlängern [40] und das Risiko der kardiovaskulären Mortalität um 42–44 % reduzieren [4, 26]. Gerade auch bei Patienten mit peripherer arterieller Verschlusskrankheit (PAVK) zeigt eine Steigerung der körperlichen Aktivität viele Vorteile [29].

Pathologische versus gewollte Blutflussrestriktion

Die PAVK ist gekennzeichnet durch einen reduzierten Blutfluss in den Arterien, die die Extremitäten versorgen. Die Hauptursachen für PAVK sind Arteriosklerose (95 %), Vaskulitiden, Infektionen, Thrombosen, Embolieerkrankungen, Unfallschäden oder Dissektionen [9]. Die Hauptrisikofaktoren sind Rauchen, Diabetes mellitus,...

External induced blood flow restriction as a model for peripheral artery disease in rest and during exercise

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Vogel und D. Niederer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Anderson JL, Halperin JL, Albert NM et al (2013) Management of patients with peripheral artery disease (compilation of 2005 and 2011 ACCF/AHA guideline recommendations): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 127(13):1425–1443PubMedCrossRefGoogle Scholar
  2. 2.
    Bagley JR, Rosengarten JJ, Galpin AJ (2015) Is blood flow restriction training beneficial for athletes? Strength Cond J 37(3):48–53CrossRefGoogle Scholar
  3. 3.
    Ben Driss A, Benessiano J, Poitevin P et al (1997) Arterial expansive remodeling induced by high flow rates. Am J Physiol 272(2):H851–H858PubMedGoogle Scholar
  4. 4.
    Blair SN, Kohl HW, Barlow CE et al (1995) Changes in physical fitness and all-cause mortality. A prospective study of healthy and unhealthy men. JAMA 273(14):1093–1098PubMedCrossRefGoogle Scholar
  5. 5.
    Bresler A, Vogel J, Niederer D et al (2019) Development of an exercise training protocol to investigate arteriogenesis in a murine model of peripheral artery disease. Int J Mol Sci.  https://doi.org/10.3390/ijms20163956 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Clyne CA, Mears H, Weller RO et al (1985) Calf muscle adaptation to peripheral vascular disease. Cardiovasc Res 19(8):507–512PubMedCrossRefGoogle Scholar
  7. 7.
    Cook SB, Brown KA, Deruisseau K et al (2010) Skeletal muscle adaptations following blood flow-restricted training during 30 days of muscular unloading. J Appl Physiol 109(2):341–349PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Dopheide JF, Rubrech J, Trumpp A et al (2017) Supervised exercise training in peripheral arterial disease increases vascular shear stress and profunda femoral artery diameter. Eur J Prev Cardiol 24(2):178–191PubMedCrossRefGoogle Scholar
  9. 9.
    Duvall WL, Vorchheimer DA (2004) Multi-bed vascular disease and atherothrombosis: scope of the problem. J Thromb Thrombolysis 17(1):51–61PubMedCrossRefGoogle Scholar
  10. 10.
    Fowkes FGR, Rudan D, Rudan I et al (2013) Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010. Lancet 382(9901):1329–1340PubMedCrossRefGoogle Scholar
  11. 11.
    Fujita S, Abe T, Drummond MJ et al (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103(3):903–910PubMedCrossRefGoogle Scholar
  12. 12.
    Gerhold KA, Schwartz MA (2016) Ion channels in endothelial responses to fluid shear stress. Physiology (Bethesda) 31(5):359–369Google Scholar
  13. 13.
    Green DJ, Hopman MTE, Padilla J et al (2017) Vascular adaptation to exercise in humans: role of hemodynamic stimuli. Physiol Rev 97(2):495–528PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gualano B, Neves M, Lima FR et al (2010) Resistance training with vascular occlusion in inclusion body myositis: a case study. Med Sci Sports Exerc 42(2):250–254PubMedCrossRefGoogle Scholar
  15. 15.
    Guerreiro LF, Rocha AM, Martins CN et al (2016) Oxidative status of the myocardium in response to different intensities of physical training. Physiol Res 65(5):737–749PubMedGoogle Scholar
  16. 16.
    Guthold R, Stevens GA, Riley LM et al (2018) Worldwide trends in insufficient physical activity from 2001 to 2016. Lancet Glob Health 6(10):e1077–e1086PubMedCrossRefGoogle Scholar
  17. 17.
    Hackney KJ, Everett M, Scott JM et al (2012) Blood flow-restricted exercise in space. Extrem Physiol Med 1(1):12PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hallal PC, Andersen LB, Bull FC et al (2012) Global physical activity levels. Lancet 380(9838):247–257PubMedCrossRefGoogle Scholar
  19. 19.
    Heil M, Eitenmüller I, Schmitz-Rixen T et al (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10(1):45–55PubMedCrossRefGoogle Scholar
  20. 20.
    Hiatt WR, Regensteiner JG, Wolfel EE et al (1996) Effect of exercise training on skeletal muscle histology and metabolism in peripheral arterial disease. J Appl Physiol 81(2):780–788PubMedCrossRefGoogle Scholar
  21. 21.
    Higashi Y, Sasaki S, Kurisu S et al (1999) Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation 100(11):1194–1202PubMedCrossRefGoogle Scholar
  22. 22.
    Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89(1):193–277PubMedCrossRefGoogle Scholar
  23. 23.
    Iida H, Kurano M, Takano H et al (2007) Hemodynamic and neurohumoral responses to the restriction of femoral blood flow by KAATSU in healthy subjects. Eur J Appl Physiol 100(3):275–285PubMedCrossRefGoogle Scholar
  24. 24.
    Katzel LI, Sorkin JD, Powell CC et al (2001) Comorbidities and exercise capacity in older patients with intermittent claudication. Vasc Med 6(3):157–162PubMedCrossRefGoogle Scholar
  25. 25.
    Lawall DH, Huppert PDP, Rümenapf PD (2015) S3-Leitlinie zur Diagnostik, Therapie und Nachsorge der peripheren arteriellen Verschlusskrankheit. Deutsche Gesellschaft für Angiologie. AWMF-Registernummer 065-003Google Scholar
  26. 26.
    Lee D‑c, Sui X, Artero EG et al (2011) Long-term effects of changes in cardiorespiratory fitness and body mass index on all-cause and cardiovascular disease mortality in men: the Aerobics Center Longitudinal Study. Circulation 124(23):2483–2490CrossRefGoogle Scholar
  27. 27.
    Lee I‑M, Shiroma EJ, Lobelo F et al (2012) Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380(9838):219–229PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lejkowski PM, Pajaczkowski JA (2011) Utilization of vascular restriction training in post-surgical knee rehabilitation: a case report and introduction to an under-reported training technique. J Can Chiropr Assoc 55(4):280–287PubMedPubMedCentralGoogle Scholar
  29. 29.
    Leng GC, Fowler B, Ernst E (2000) Exercise for intermittent claudication. Cochrane Database Syst Rev 2:CD990Google Scholar
  30. 30.
    Loenneke JP, Pujol TJ (2009) The use of occlusion training to produce muscle hypertrophy. Strength Cond J 31(3):77–84CrossRefGoogle Scholar
  31. 31.
    Loenneke JP, Wilson GJ, Wilson JM (2010) A mechanistic approach to blood flow occlusion. Int J Sports Med 31(1):1–4PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Loenneke JP, Abe T, Wilson JM et al (2012) Blood flow restriction: an evidence based progressive model (Review). Acta Physiol Hung 99(3):235–250PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lynch GS, Ryall JG (2008) Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 88(2):729–767PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Menêses AL, Ritti-Dias RM, Parmenter B et al (2017) Combined lower limb revascularisation and supervised exercise training for patients with peripheral arterial disease: a systematic review of randomised controlled trials. Sports Med 47(5):987–1002PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Michishita R, Shono N, Inoue T et al (2010) Effect of exercise therapy on monocyte and neutrophil counts in overweight women. Am J Med Sci 339(2):152–156PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Moritani T, Sherman WM, Shibata M et al (1992) Oxygen availability and motor unit activity in humans. Eur J Appl Physiol Occup Physiol 64(6):552–556PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nakajima T, Iida H, Kurano M et al (2008) Hemodynamic responses to simulated weightlessness of 24‑h head-down bed rest and KAATSU blood flow restriction. Eur J Appl Physiol 104(4):727–737PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Nash MS, Montalvo BM, Applegate B (1996) Lower extremity blood flow and responses to occlusion ischemia differ in exercise-trained and sedentary tetraplegic persons. Arch Phys Med Rehabil 77(12):1260–1265PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Niessner A, Richter B, Penka M et al (2006) Endurance training reduces circulating inflammatory markers in persons at risk of coronary events: impact on plaque stabilization? Atherosclerosis 186(1):160–165PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Paffenbarger RS, Kampert JB, Lee IM et al (1994) Changes in physical activity and other lifeway patterns influencing longevity. Med Sci Sports Exerc 26(7):857–865PubMedCrossRefGoogle Scholar
  41. 41.
    Reeves GV, Kraemer RR, Hollander DB et al (2006) Comparison of hormone responses following light resistance exercise with partial vascular occlusion and moderately difficult resistance exercise without occlusion. J Appl Physiol 101(6):1616–1622PubMedCrossRefGoogle Scholar
  42. 42.
    Regensteiner JG, Steiner JF, Hiatt WR (1996) Exercise training improves functional status in patients with peripheral arterial disease. J Vasc Surg 23(1):104–115PubMedCrossRefGoogle Scholar
  43. 43.
    Risau W (1997) Mechanisms of angiogenesis. Nature 386(6626):671–674PubMedCrossRefGoogle Scholar
  44. 44.
    Sayed A, Schierling W, Troidl K et al (2010) Exercise linked to transient increase in expression and activity of cation channels in newly formed hind-limb collaterals. Eur J Vasc Endovasc Surg 40(1):81–87PubMedCrossRefGoogle Scholar
  45. 45.
    Schaper W (2003) On arteriogenesis—a reply. Basic Res Cardiol 98(3):183–184PubMedGoogle Scholar
  46. 46.
    Shi Z‑D, Tarbell JM (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann Biomed Eng 39(6):1608–1619PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Takano H, Morita T, Iida H et al (2005) Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. Eur J Appl Physiol 95(1):65–73CrossRefGoogle Scholar
  48. 48.
    Takarada Y, Takazawa H, Ishii N (2000) Applications of vascular occlusion diminish disuse atrophy of knee extensor muscles. Med Sci Sports Exerc 32(12):2035–2039PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Tendera M, Aboyans V, Bartelink M‑L et al (2011) ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J 32(22):2851–2906PubMedCrossRefGoogle Scholar
  50. 50.
    Timmerman KL, Flynn MG, Coen PM et al (2008) Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise? J Leukoc Biol 84(5):1271–1278PubMedCrossRefGoogle Scholar
  51. 51.
    Tronc F, Mallat Z, Lehoux S et al (2000) Role of matrix metalloproteinases in blood flow-induced arterial enlargement: interaction with NO. Arterioscler Thromb Vasc Biol 20(12):E120–E126PubMedCrossRefGoogle Scholar
  52. 52.
    Vogel J, Niederer D, Engeroff T et al (2019) Effects on the profile of circulating miRNAs after single bouts of resistance training with and without blood flow restriction‑A three-arm, randomized crossover trial. Int J Mol Sci.  https://doi.org/10.3390/ijms20133249 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Wang G‑K, Zhu J‑Q, Zhang J‑T et al (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31(6):659–666PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Arbeitsbereich Sportmedizin und LeistungsphysiologieGoethe-Universität Frankfurt am MainFrankfurt am MainDeutschland

Personalised recommendations