Advertisement

Gefässchirurgie

, Volume 20, Issue 2, pp 102–111 | Cite as

Ultraschalldiagnostik von Nierenarterienstenosen

Stenosekriterien, CEUS, In-Stent-Rezidivstenose
  • W. SchäberleEmail author
  • L. Leyerer
  • W. Schierling
  • K. Pfister
Leitthema
  • 277 Downloads

Zusammenfassung

Hintergrund und Fragestellung

Als nicht invasive, nebenwirkungsfreie und kostengünstige Methode ist die Sonographie für die Diagnostik der Nierenarterienstenose die Methode der Wahl. Insgesamt vier verschiedene Methoden, zwei direkte (peak systolic velocity = PSV, renal aortic ratio = RAR) und zwei indirekte Kriterien (resistance index = RI, Akzelerationszeit) zur Messung relevanter Nierenarterienstenosen werden beschrieben, jeweils mit sehr unterschiedlichen Treffsicherheiten in verschiedenen Studien. Weiterhin wird kontrovers diskutiert, ab welchem Grad die Stenose therapierelevant ist und welche sonographische Grenzgeschwindigkeit (PSV) in der Graduierung diagnostisch relevant ist.

Methode

Kritisches Review basierend auf einer selektiven Literaturrecherche zu Messmethodik und Validität der Sonographie bei Nierenarterienstenose. Kritische Methodenevaluation und Darstellung von Messprinzipien zur möglichst exakten Messung verglichen mit dem Goldstandard Angiographie sowie Bewertung des Stellenwerts von CT-Angiographie und MR-Angiograpie.

Ergebnisse und Schlussfolgerungen

Die PSV bietet als direkte Messmethode in der Stenosedetektion und Graduierung die höchste Sensitivität und Spezifität. Die meisten Studien ermitteln in ROC-Kurven bei einer PSV > 180–200 cm/s Sensitivitäten und Spezifitäten von 85–90 % für > 50 %igen Stenosen. Andere Methoden wie der Quotient aus PSV in Aorta und Nierenarterie (RAR) oder indirekte Kriterien wie der Widerstandsindex im Seitenvergleich (dRI) oder die Akzelerationszeit können ergänzend zu Verbesserung der Treffsicherheit herangezogen werden. Die Kontrastmittelsonographie (CEUS) verbessert durch die Echokontrastverstärkung die Treffsicherheit.

Früher wurden erst höhergradige Stenosen als therapierelevant angesehen, andererseits wird inzwischen schon der Druckabfall von > 20 mmHg bei > 50 %igen Stenosen (PSV 180 cm/s) als relevant für einen Reninanstieg bewertet. Stenosen bei fibromuskulären Dysplasien können sonographisch nach dem Kontinuitätsgesetz zuverlässig graduiert werden. Die Studienlage in der Graduierung von In-Stent-Rezidivstenosen ist kontrovers, tendenziell höhere Cut-off-Werte für PSV und RAR sind jedoch anzunehmen. MRA und CTA zeigen zwar Treffsicherheiten von > 90 %, jedoch mit möglichen Nebenwirkungen für Patienten, insbesondere bei vorbestehendem Nierenparenchymschaden.

Schlüsselwörter

Farbduplexsonographie Nierenarterienstenose Stenosekriterien In-Stent-Rezidivstenose Ceus 

Ultrasound diagnostics of renal artery stenosis

Stenosis criteria, CEUS and recurrent in-stent stenosis

Abstract

Background and objectives

Sonography is a non-invasive and economic method with no side effects and is the method of choice for the diagnostics of renal artery stenosis. A total of four different methods, including two direct criteria, i.e. peak systolic velocity (PSV) and renal aortic ratio (RAR) and two indirect criteria, i.e. resistance index (RI) and acceleration time for measurement of relevant renal artery stenoses are described, each with very different accuracies in various studies. Furthermore, it is controversially discussed what grade of stenosis is therapy relevant and which sonographic PSV is diagnostically relevant in grading.

Methods

This article presents a critical review based on a selective literature search of measurement methods and validity of sonography for renal artery stenosis. A critical evaluation of the methods and presentation of the measurement principles for an exact as possible measurement compared to the gold standard of angiography is followed by an assessment of the importance of computed tomography angiography (CTA) and magnetic resonance angiography (MRA).

Results and conclusion

As a direct measurement method PSV provides the highest sensitivity and specificity in the detection and grading of stenoses. Most studies reported a sensitivity and specificity of 85–90 % for > 50 % stenoses in receiver operating characteristic (ROC) curves with a PSV > 180–200 cm/s. Other methods, such as the ratio of PSV in RAR or indirect criteria, such as RI in a side to side comparison (dRI) and acceleration time can be used as additional methods to improve the accuracy. Contrast-enhanced ultrasound (CEUS) improves the accuracy due to echo contrast enhancement. Previously, only higher grade stenoses were considered to be therapy relevant but now even a drop in pressure of > 20 mmHg for > 50 % stenoses (PSV 180 cm/s) is considered to be relevant for an increase in renin. Stenoses in fibromuscular dysplasia can be reliably graded sonographically according to the law of continuity. The study situation in grading of recurrent in-stent stenoses is controversial; however, tendentially higher cut-off values for PSV and RAR are assumed. Both MRA and CTA have an accuracy > 90 % but with possible side effects for patients especially with pre-existing renal parenchymal damage.

Keywords

Color duplex sonography Renal artery stenosis Stenosis criteria Recurrent in-stent stenosis Contrast enhanced ultrasonography 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflik

W. Schäberle, L. Leyerer, W. Schierling und K. Pfister geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Supplementary material

(AVI Video 89551 kb)

(AVI Video 81026 kb)

Literatur

  1. 1.
    Abu Rahma AF, Srivastava M, Mousa AY (2012) Critical analysis of renal duplex ultrasound parameters in detecting significant renal artery stenosis. J Vasc Surg 56:1052–1060CrossRefGoogle Scholar
  2. 2.
    Avasthi PS, Voyles WF, Greene ER (1984) Noninvasive diagnosis of renal artery stenosis by echo-Doppler velocimetry. Kidney Int 25:824–829CrossRefPubMedGoogle Scholar
  3. 3.
    Bakker J, Beek FJ, Beutler JJ (1998) Renal artery stenosis and accessory renal arteries: accuracy of detection and visualization with gadolinium-enhanced breath-hold MR angiography. Radiology 207:497–504CrossRefPubMedGoogle Scholar
  4. 4.
    Beregi JP, Louvegny S, Ceugnart L (1997) Helical x-ray computed tomography of renal arteries. Apropos of 300 patients. J Radiol 78:549–556PubMedGoogle Scholar
  5. 5.
    Chi YW, White CJ, Thornton S, Milani RV (2009) Ultrasound velocity criteria for renal in-stent restenosis. J Vasc Surg 50:119–123CrossRefPubMedGoogle Scholar
  6. 6.
    Ciccone MM, Cortese F, Fiorella A, Scicchitano P, Cito F, Quistelli G, Pertosa G, D’Agostino R, Guida P, Favale S (2011) The clinical role of contrast-enhanced ultrasound in the evaluation of renal artery stenosis and diagnostic superiority as compared to traditional echo-color-Doppler flow imaging. Int Angiol 30:135–139PubMedGoogle Scholar
  7. 7.
    Claudon M, Plouin PF, Baxter GM, Rohban T, Devos DM (2002) Renal arteries in patients at risk of renal arterial stenosis: multicenter evaluation of the echo-enhancer SH U 508A at color and spectral Doppler US. Levovist Renal Artery Stenosis Study Group. Radiology 214:739–746CrossRefGoogle Scholar
  8. 8.
    Conkbayir I, Yucesoy C, Edguer T (2003) Doppler sonography in renal artery stenosis. An evaluation of intrarenal and extrarenal imaging parameters. Clin Imaging 27:256–260CrossRefPubMedGoogle Scholar
  9. 9.
    De Bruyne B, Manoharan G, Pijls NH (2006) Assessment of renal stenosis severity by pressure gradient measurements. J Am CollCardiol 48:1851–1855CrossRefGoogle Scholar
  10. 10.
    Derkx FH, Schalekamp MA (1994) Renal arterystenosisandhypertension. Lancet 344:237–239CrossRefPubMedGoogle Scholar
  11. 11.
    Fleming SH, Ross PD, Timothy EC (2010) Accuracy of duplex sonography scans after renal artery stenting. J Vasc Surg 52:953–958CrossRefPubMedGoogle Scholar
  12. 12.
    Garovic VD, Textor SC (2005) Renovascular hypertension and ischemic nephropathy. Circulation 112:1362–1374CrossRefPubMedGoogle Scholar
  13. 13.
    Glifeather M, Yoon HC, Siegelman ES (1999) Renal artery stenosis: evaluation with conventional angiography versus gadolinium-enhanced MR angiography. Radiology 210:367–372CrossRefGoogle Scholar
  14. 14.
    Guo Z, Fenster A (1996) Three-dimensional power Doppler imaging: a phantom study to quantify vessel stenosis. Ultrasound Med Biol 22:1059–1069CrossRefPubMedGoogle Scholar
  15. 15.
    Hansen KJ, Tribble RW, Reavis SW (1990) Renal duplex sonography: evaluation of clinical utility. J VascSurg 12:227–236Google Scholar
  16. 16.
    Hawkins PG, McKnoulty LM, Gordon RD (1989) Noninvasive renal artery duplex ultrasound and computerized nuclear renography to screen for and follow progress in renal artery stenosis. J Hypertens Suppl 7:184–185CrossRefGoogle Scholar
  17. 17.
    Hirsch AT, Haskal ZJ, Hertzer NR (2006) ACC/AHA 2005 partice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery. Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease). Circulation 113:e463–e654CrossRefPubMedGoogle Scholar
  18. 18.
    Karasch T, Strauss AL, Grün B, Worringer M, Neuerburg-Heusler D, Roth FJ, Rieger H (1993) Farbkodierte Duplexsonographie in der Diagnostik von Nierenarterienstenosen. Dtsch Med Wochschr 118:1429–1436CrossRefGoogle Scholar
  19. 19.
    Kim TS, Chung JW, Park JH (1998) Renal artery evaluation: comparison of spiral CT angiographyto intra-arterial DSA. J VascInterv Radiol 9:553–559CrossRefGoogle Scholar
  20. 20.
    Kohler TR, Zierler RE, Martin RL (1986) Noninvasive diagnosis of renal artery stenosis by ultrasonic duplex scanning. J Vasc Surg 4:450–456CrossRefPubMedGoogle Scholar
  21. 21.
    Krinsky G, Rofsky N, Giangola G (1996) Gadolinium-enhanced three-dimensional MR angiography of acquired arch vessel disease. AJR Am J Roentgenol 167:981–987CrossRefPubMedGoogle Scholar
  22. 22.
    Krumme B, Blum U, Schwertfeger E (1996) Diagnosis of renovascular disease by intra- and extrarenal Doppler scanning. Kidney Int 50:1288–1292CrossRefPubMedGoogle Scholar
  23. 23.
    Leiner T, de Haan MW, Nelemans PJ (2005) Contemporary imaging techniques for the diagnosis of renal artery stenosis. Eur Radiol 15:2219–2229CrossRefPubMedGoogle Scholar
  24. 24.
    May AG, Deweese JA, ROB CG (1963) Hemodynamic effects of arterial stenosis. Surgery 53:513–524PubMedGoogle Scholar
  25. 25.
    Missouris CG, Allen CM, Balen FG, Buckham T, Lees WR, MacGregor GA (1996) Non-invasiv screening for renal artery stenosis with ultrasound contrast enhancement. J Hypertense 14:519–524Google Scholar
  26. 26.
    Motew SJ, Cherr GS, Craven TE (2000) Renal duplex sonography: main renal artery versus hilaranaylsis. J Vasc Surg 32:462–471CrossRefPubMedGoogle Scholar
  27. 27.
    Muster BR, Williams DM, Prince MR (1998) In vitro model of arterial stenosis: correlation of MR signal dephasing and trans-stenotic pressure gradients. Magn Reson Imaging 16:301–310CrossRefGoogle Scholar
  28. 28.
    Napoli V, Pinto S, Bargellini I, Vignali C, cioni R, Petruzzi P (2002) Duplex ultrasonographic study of the renal arteries before and after renal artery stenting. Eur Radiol 12:796–803CrossRefPubMedGoogle Scholar
  29. 29.
    Nolan BW, Schermerhorn ML, Powell RJ, Rowell E (2005) Restenosis in gold-coated renal artery stents. J Vasc Surg 42:40–46CrossRefPubMedGoogle Scholar
  30. 30.
    Olin JW (2002) Atherosclerotic renal artery disease. Cardiol Clin 20:547–562CrossRefPubMedGoogle Scholar
  31. 31.
    Olin JW, Piedmonte MR, Young JR (1995) The utility of duplex ultrasound scanning of renal arteries for diagnosing significant renal artery stenosis. Ann Intern Med 122:833–838CrossRefPubMedGoogle Scholar
  32. 32.
    Radermacher J, Chavan A, Schäffer J (2000) Detection of significant renal artery stenosis with color Doppler sonography: combining extrarenal and intrarenal approaches to minimize technical failure. Clin Nephrol 53:333–343PubMedGoogle Scholar
  33. 33.
    Ripolles T, Aliaga R, Morote V (2001) Utility of intrarenal Doppler ultrasound in the diagnosis of renal artery stenosis. Eur J Radiol 40:54–63CrossRefPubMedGoogle Scholar
  34. 34.
    Rocha-Singh K, Jaff MR, Lynne Kelly E (2008) RENAISSANCE Trial Investigators. renal artery stenting with noninvasive duplex ultrasound follow-up: 3-year results from the RENAISSANCE renal stent trial. Catheter Cardiovasc Interv 72:853–862CrossRefPubMedGoogle Scholar
  35. 35.
    Rountas C, Vlychou M, Vassiou K (2007) Imaging modalities for renal artery stenosis in suspected renovascular hypertension: prospective intraindividual comparison of color Doppler US, CT angiography, GD-enhanced MR angiography and digital subtraction angiography. Ren Fall 29:295–302CrossRefGoogle Scholar
  36. 36.
    Safian RD, Textor SC (2001) Renal-artery Stenosis. N Engl J Med 344:431–442CrossRefPubMedGoogle Scholar
  37. 37.
    Schäberle W (2009) Ultraschall in der Gefäßdiagnostik, 3. Aufl. Springer, Heidelberg, S 338, 402–409, 450–455Google Scholar
  38. 38.
    Schäberle W, Strauss A, Neuerburg-Heusler D, Roth FJ (1992) Wertigkeit der Duplexsonographie in der Diagnostik der Nierenarterienstenose und ihre Eignung in der Verlaufskontrolle nach Angioplastie (PTA). Ultraschall Med 13:271–276CrossRefPubMedGoogle Scholar
  39. 39.
    Shetty AN, Bis KG, Kirsch M (2000) Contrast-enhanced breath-hold three-dimensional magnetic resonance angiography in the evaluation of renal arteries: optimization of technique and pitfalls. J Magn Reson Imaging 12:912–923CrossRefPubMedGoogle Scholar
  40. 40.
    Solar M, Zizka J, Krajina A, Michl A, Raupach J, Kizo L, Ryska P, Ceral J (2011) Comparison of duplex ultrasonography and magnetic resonance imaging in the detection of significant renal artery stenosis. Acta Medica 54(1):9–12PubMedGoogle Scholar
  41. 41.
    Souza de Oliveira IR Widmann A Molnar LJ (2000) Colour Doppler ultrasound: a new indes improves the diagnosis of renal artery stenosis. Ultrasound Med Biol 26:41–47CrossRefPubMedGoogle Scholar
  42. 42.
    Staub D, Canevascini R, Huegli RW, Aschwanden M, Thalhammer C, Imfeld S, Singer E, Jacob AL, Jaeger KA (2007) Best duplex-sonographic criteria for the assessment of renal artery stenosis – correlation with intra-arterial pressure gradient. Ultraschall Med 28:45–51CrossRefPubMedGoogle Scholar
  43. 43.
    Steffens JC, Link J, Graessnerr J (1997) Contrast-enhanced, K-space-centered, breath-hold MR angiography of renal arteries and the abdominal aorta. J MagnReson Imaging 7:617–622CrossRefGoogle Scholar
  44. 44.
    Steinweder C, Schutzenberger W, Fellner F (2009) 64-Detector CT angiography in renal artery stent evaluation: prospective comparison with selective catheter angiography. Radiology 252:299–305CrossRefGoogle Scholar
  45. 45.
    Strauss AL, Roth FJ, Rieger H (1993). Noninvasive assessment of pressure gradients across iliac artery stenosis: Duplex and catheter correlative study. J Ultrasound Med 12:17–22PubMedGoogle Scholar
  46. 46.
    Stock KF (2009) Ultraschalldiagnostik der Nierengefäße und der Transplantatniere. Radiologe 49:1040–1047CrossRefPubMedGoogle Scholar
  47. 47.
    Textor SC (1994) Renovascular Hypertension. Endocrinol Metabol Clin North Am 23:235–253Google Scholar
  48. 48.
    Van Jaarsveld BC, Pieterman H, van Dijk LC, van Seijen AJ, Derkx FH, Man in’t Veld AJ, Schalekamp MA (1999) Inter-observer variability in the angiographic assessment of renal artery stenosis. DRASTIC study group. Dutch Renal Artery Stenosis Intervention Cooperative. J Hypertense 17(12 Pt 1):1731–1736CrossRefGoogle Scholar
  49. 49.
    Vasbinder GB, Nelemans PJ, Kessels AG (2001) Diagnostic tests for renal artery stenosis in patients suspected of having renovascular hypertension: a meta-analysis. Ann Intern Med 135:401–411CrossRefPubMedGoogle Scholar
  50. 50.
    Vasbinder GB, Nelemans PJ, Kessels AG (2004) Renal Artery Diagnostic Imaging Study in Hypertension (RADISH) Study Group. Accuracy of computed tomographic angiography and magnetic resonance angiography for diagnosing renal artery stenosis. Ann Intern Med 141:674–682CrossRefPubMedGoogle Scholar
  51. 51.
    Willoteaux S, Faivre-Pierret M, Moranne O (2006) Fibromuscular dysplasia of the main renal arteries: comparison of contrast-enhanced MR angiography with digital subtraction angiography. Radiology 241:922–929CrossRefPubMedGoogle Scholar
  52. 52.
    Wittenberg G, Kenn W, Tschammler A (1999) Spiral CT angiography. Eur Radiol 9:546–551CrossRefPubMedGoogle Scholar
  53. 53.
    Zeller T, Frank U, Späth M (2001) Farbduplexsonographische Darstellbarkeit von Nierenarterien und Erkennung hämodynamisch relevanter Nierenarterienstenosen. Ultraschall Med 22:116–121CrossRefPubMedGoogle Scholar
  54. 54.
    Zierler RE (2001) Is duplex scanning the best screening test for renal artery stenosis? Semin Vasc Surg 14:177–185CrossRefPubMedGoogle Scholar
  55. 55.
    Taylor DC Kettler MD, Monetta GL et al (1988) Duplex ultrasound in the diagnosis of renal artery: a prospective evaluation. J Vasc Surg 7: 363–769Google Scholar
  56. 56.
    Ferretti G, Salomone A, Castagno PL (1988) Renovascular hypertension: a non-invasiv duplex scanning screening. Int. Angiol. 7:219–223Google Scholar
  57. 57.
    Kawarada O, Yokoi Y, Yakemoto K et al (2006) The performance of renal ultrasonography for the detection of hemodynamically significant renal artery stenosis. Catheter Cardiovasc Interv 68:311–318Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • W. Schäberle
    • 1
    Email author
  • L. Leyerer
    • 1
  • W. Schierling
    • 2
  • K. Pfister
    • 2
  1. 1.Klinik für Viszeral-, Gefäß-, Thorax- und KinderchirurgieKlinik am Eichert GöppingenGöppingenDeutschland
  2. 2.Gefäß- und endovaskuläre ChirurgieUniversitätsklinikum RegensburgRegensburgDeutschland

Personalised recommendations