Advertisement

Grundwasser

pp 1–13 | Cite as

Sanierung eines PCE-Schadens in einem makroskopisch oxischen Grundwasserleiter durch Stimulation anaerober dehalogenierender Bakterien

  • Daniel BuchnerEmail author
  • Meenakshi Schweikhart
  • Sebastian Behrens
  • Thomas Schöndorf
  • Christine Laskov
  • Stefan B. Haderlein
Fachbeitrag
  • 38 Downloads

Zusammenfassung

Eine erfolgreiche biologische In-situ-Sanierung von PCE-kontaminierten Grundwasserleitern erfordert hinreichend reduzierende Bedingungen sowie die Anwesenheit von molekularem Wasserstoff, der dehalogenierenden Bakterien als Elektronendonor dient. Durch Injektion eines biologisch gut abbaubaren Hilfsstoffs (Auxiliarsubstrat) können diese Faktoren gesteuert werden.

Die vorliegende Fallstudie beschreibt die Verfahrensschritte für eine erfolgreiche Stimulierung des biologischen PCE-Abbaus in einem ursprünglich sauerstoffhaltigen Grundwasserleiter. Laboruntersuchungen in Mikrokosmen (Stufe I) verifizierten das standorteigene bakterielle Abbaupotenzial sowie die Eignung des Auxiliarsubstrats (hier: Melasse). Basierend auf hydrogeologischen und geochemischen Felddaten wurde die erforderliche Melassemenge abgeschätzt sowie deren Wirkungsbereich im Aquifer modelliert (Stufe II). Im Feldversuch erfolgten periodische Injektionen des Auxiliarsubstrats (hier: 170 Tage) begleitet von geochemischen und molekularbiologischen Analysen (Stufe III). Durch die Melasseinjektion konnten im PCE-kontaminiertem Bereich des Aquifers methanogene Bedingungen sowie eine massive Zunahme von Schlüsselbakterien der Gattung Dehalococcoides induziert werden. Der erfolgreiche In-situ-Bioabbau von PCE zu Ethen wurde durch substanzspezifische Kohlenstoff-Isotopenanalysen bestätigt.

Stimulation of anaerobic PCE dechlorinating bacteria in a macroscopic oxic aquifer

Abstract

A successful biological in situ remediation of PCE contaminated aquifers requires suitable redox conditions as well as molecular hydrogen used by dehalogenating bacteria as the electron donor. Injecting an easily biodegradable auxiliary substrate allows to control both factors. The present study describes the procedural steps for a successful stimulation of biological PCE-degradation in a primary oxygen-containing aquifer. A microcosm study (level I) showed the bacterial potential of the site and the suitability of molasses as an auxiliary substrate. Using hydrogeological and geochemical field data, the amount of molasses was estimated and its zone of influence was modelled (level II). In a field test, molasses was periodically injected (170 days) accompanied by geochemical and molecular biological analysis (level III). Following the injection of molasses, methanogenic conditions as well as a significant increase of Dehalococcoides was observed. In situ biodegradation of PCE to ethene was verified by compound-specific carbon isotope analysis.

Keywords

ENA Dehalococcoides Isotope analysis Molasses 

Supplementary material

767_2018_410_MOESM1_ESM.pdf (690 kb)
Lageplan, Detailbschreibungen der drei Mikrokosmenversuchsreihen, Liste der verwendet Primer, tiefenzonierte Grundwasserprofile​, der δ13C Analyse ​Mikrokosmenversuch, Graphik Melasse-Injektionen

Literatur

  1. Adrian, L., Löffler, F.E.: Organohalide-respiring bacteria. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  2. Aelion, C.M., Patrick, H., Daniel Hunkeler, R.A.: Environmental isotopes in biodegradation and bioremediation. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  3. Aeppli, C., Hofstetter, T.B., Amaral, H.I.F., Kipfer, R., Schwarzenbach, R.P., Berg, M.: Quantifying in situ transformation rates of chlorinated ethenes by combining compound-specific stable isotope analysis, groundwater dating, and carbon isotope mass balances. Environ. Sci. Technol. 44, 3705–3711 (2010).  https://doi.org/10.1021/es903895b CrossRefGoogle Scholar
  4. Atashgahi, S., Lu, Y., Zheng, Y., Saccenti, E., Suarez-Diez, M., Ramiro-Garcia, J., Eisenmann, H., Elsner, M., Stams, A.J., Springael, D., Dejonghe, W., Smidt, H.: Geochemical and microbial community determinants of reductive dechlorination at a site biostimulated with glycerol. Environ. Microbiol. 18, 1–34 (2016).  https://doi.org/10.1111/1462-2920 CrossRefGoogle Scholar
  5. Behrens, S., Azizian, M.F., McMurdie, P.J., Sabalowsky, A., Dolan, M.E., Semprini, L., Spormann, A.M.: Monitoring abundance and expression of Dehalococcoides species chloroethene-reductive dehalogenases in a tetrachloroethene-dechlorinating flow column. Appl. Environ. Microbiol. 74, 5695–5703 (2008).  https://doi.org/10.1128/AEM.00926-08 CrossRefGoogle Scholar
  6. Bombach, P., Richnow, H.H., Kästner, M., Fischer, A.: Current approaches for the assessment of in situ biodegradation. Appl. Microbiol. Biotechnol. 86, 839–852 (2010)CrossRefGoogle Scholar
  7. Borch, T., Kretzschmar, R., Skappler, A., Van Cappellen, P., Ginder-Vogel, M., Voegelin, A., Campbell, K.: Biogeochemical redox processes and their impact on contaminant dynamics (2010)  https://doi.org/10.1021/es9026248 CrossRefGoogle Scholar
  8. Bradley, P.M.: Microbial degradation of chloroethenes in groundwater systems. Hydrogeol. J. 8, 251–253 (2000).  https://doi.org/10.1007/s100400050011 CrossRefGoogle Scholar
  9. Van Breukelen, B.M., Hunkeler, D., Volkering, F.: Quantification of sequential chlorinated ethene degradation by use of a reactive transport model incorporating isotope fractionation. Environ. Sci. Technol. 39, 4189–4197 (2005).  https://doi.org/10.1021/es048973c CrossRefGoogle Scholar
  10. Buchner, D., Behrens, S., Laskov, C., Haderlein, S.B.: Resiliency of stable isotope fractionation (δ13C and δ37Cl) of trichloroethene to bacterial growth physiology and expression of key enzymes. Environ. Sci. Technol. 49, 13230–13237 (2015).  https://doi.org/10.1021/acs.est.5b02918 CrossRefGoogle Scholar
  11. Chapelle, F.H.: Identifying redox conditions that favor the natural attenuation of chlorinated ethenes in contaminated ground-water systems. In: Office of Research and Development (Hrsg.) Proceedings of the symposium on natural attenuation of chlorinated organics in ground water, S. 19–22. Office of Research and Development, Washington, DC (1997). https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=438427 Google Scholar
  12. Christensen, T.H., Bjerg, P.L., Banwart, S.A., Jakobsen, R., Heron, G., Albrechtsen, H.-J.: Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 45, 165–241 (2000)CrossRefGoogle Scholar
  13. Cupples, A.M., Spormann, A.M., McCarty, P.L.: Growth of a Dehalococcoides-like microorganism on vinyl chloride and cis-Dichloroethene as electron acceptors as determined by competitive PCR. Appl. Environ. Microbiol. 69, 953–959 (2003).  https://doi.org/10.1128/aem.69.2.953-959.2003 CrossRefGoogle Scholar
  14. Damgaard, I., Bjerg, P.L., Jacobsen, C.S., Tsitonaki, A., Kerrn-Jespersen, H., Broholm, M.M.: Performance of full-scale enhanced reductive dechlorination in clay till. Ground Water. Monit. Remediat 33, 48–61 (2013).  https://doi.org/10.1111/j.1745-6592.2012.01405.x CrossRefGoogle Scholar
  15. Delgado, A.G., Parameswaran, P., Fajardo-Williams, D., Halden, R.U., Krajmalnik-Brown, R.: Role of bicarbonate as a pH buffer and electron sink in microbial dechlorination of chloroethenes. Microb. Cell. Fact. 11, 128 (2012).  https://doi.org/10.1186/1475-2859-11-128 CrossRefGoogle Scholar
  16. DIN EN 1484. Wasseranalytik – Anleitungen zur Bestimmung des gesamten organischen Kohlenstoffs (TOC) und des gelösten organischen Kohlenstoffs (DOC). Dtsch. Fassung EN 1484-1997-08. (1997a)Google Scholar
  17. DIN EN ISO 10301. Wasserbeschaffenheit – Bestimmung leichtflüchtiger halogenierter Kohlenwasserstoffe – Gaschromatographische Verfahren. Dtsch. Fassung EN ISO 103011997-07. (1997b)Google Scholar
  18. DIN 38405-7. Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung – Anionen (Gruppe D) – Teil 7: Bestimmung von Cyaniden in gering belastetem Wasser mit Ionenchromatographie oder potentiometrischer Titration (D 7). 2002:04. (2002)Google Scholar
  19. DIN EN ISO 11732. Wasserbeschaffenheit – Bestimmung von Ammoniumstickstoff – Verfahren mittels Fließanalytik (CFA und FIA) und spektrometrischer Detektion. Dtsch. Fassung EN ISO 117322005-05. (2005)Google Scholar
  20. DIN EN ISO 10304-1. Wasserbeschaffenheit – Bestimmung von gelösten Anionen mittels Flüssigkeits-Ionenchromatographie – Teil 1: Bestimmung von Bromid, Chlorid, Fluorid, Nitrat, Nitrit, Phosphat und Sulfat. Dtsch. Fassung EN ISO 10304-12009-07. (2009a)Google Scholar
  21. DIN EN ISO 11885. Wasserbeschaffenheit – Bestimmung von ausgewählten Elementen durch induktiv gekoppelte Plasma-Atom-Emissionsspektrometrie (ICP-OES). Dtsch. Fassung EN ISO 118852009-09. (2009b)Google Scholar
  22. Elsner, M., Couloume, G.L., Sherwood Lollar, B.: Freezing to preserve groundwater samples and improve headspace quantification limits of water-soluble organic contaminants for carbon isotope analysis. Anal. Chem. 78, 7528–7534 (2006)CrossRefGoogle Scholar
  23. Fischer, A., Manefield, M., Bombach, P.: Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies. Curr. Opin. Biotechnol. 41, 99–107 (2016).  https://doi.org/10.1016/j.copbio.2016.04.026 CrossRefGoogle Scholar
  24. Gibert, J., Danielopol, D.L., Stanford, J.A.: Groundwater ecology. Academic Press, New York, Boston, London, Oxford (1994)Google Scholar
  25. Helz, G.R., Ciglenečki, I., Krznarić, D., Bura-Nakić, E.: Aquatic redox chemistry. American Chemical Society, Washington, DC (2011)  https://doi.org/10.1021/bk-2011-1071. ISBN 978-0841226524Google Scholar
  26. Hendrickson, E.R., Payne, J.A., Young, R.M., Starr, M.G., Perry, M.P., Fahnestock, S., Ellis, D.E., Ebersole, R.C.: Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout North America and Europe. Appl. Environ. Microbiol. 68, 485 (2002)CrossRefGoogle Scholar
  27. Hunkeler, D., Meckenstock, R., Sherwood Lollar, B., Schmidt, T.C., Wilson, J.T.: A guide for assessing biodegradation and source indentification of organic ground water contaminants using compound specific isotope analyses (CISA). United States Environmantal Prot. Agency, Washington, D.C. (2008)Google Scholar
  28. ITRC In situ bioremediation of chlorinated ethene: DNAPL source zones. BIO‐LNAPL-3. Washington, D.C.: Interstate Technology & Regulatory Council, Bioremediation of Dense Nonaqueous Phase Liquids (Bio DNAPL) Team. https://www.itrcweb.org/ (2008)
  29. Lee, P.K.H., Macbeth, T.W., Sorenson Jr., K.S., Deeb, R.A., Alvarez-Cohen, L., Sorenson Jr, K.S., Deeb, R.A., Alvarez-Cohen, L.: Quantifying genes and transcripts to assess the in situ physiology of „Dehalococcoides“ spp. in a trichloroethene-contaminated groundwater site. Appl. Environ. Microbiol. 74, 2728 (2008).  https://doi.org/10.1128/AEM.02199-07 CrossRefGoogle Scholar
  30. Löffler, F.E., Yan, J., Ritalahti, K.M., Adrian, L., Edwards, E.A., Konstantinidis, K.T., Müller, J.A., Fullerton, H., Zinder, S.H., Spormann, A.M.: Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and famil. Int J Syst Evol Microbiol 63, 625–635 (2013).  https://doi.org/10.1099/ijs.0.034926-0 CrossRefGoogle Scholar
  31. Lu, X., Wilson, J.T., Kampbell, D.H.: Comparison of an assay for Dehalococcoides DNA and a microcosm study in predicting reductive dechlorination of chlorinated ethenes in the field. Environ. Pollut. 157, 809–815 (2009).  https://doi.org/10.1016/j.envpol.2008.11.015 CrossRefGoogle Scholar
  32. Madigan, M.T., Martinko, J.M., Stahl, D.A., Clark, D.P.: Brock Mikrobiologie. Pearson, London (2013)Google Scholar
  33. Major, D.W., McMaster, M.L., Cox, E.E., Edwards, E., Dworatzek, S.M., Hendrickson, E.R., Starr, M.G., Payne, J.A., Buonamici, L.W., David, W., McMaster, M.L., Cox, E.E., Edwards, E., Dworatzek, S.M., Hendrickson, E.R., Starr, M.G., Payne, J.A., Buonamici, L.W.: Field demonstration of successful bioaugmentation to achieve dechlorination of tetrachloroethene to ethene. Environ. Sci. Technol. 36, 5106–5116 (2002).  https://doi.org/10.1021/es0255711 CrossRefGoogle Scholar
  34. Maymo-Gatell, X., Yueh-tyng, C., James, M.G., Stephen, H.Z.: Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 80(276), 219–221 (1990)Google Scholar
  35. Meckenstock, R.U., Morasch, B., Griebler, C., Richnow, H.-H.H.: Stable isotope fractionation analysis as a tool to monitor biodegradation in contaminated aquifers. J. Contam. Hydrol. 75, 215–255 (2004).  https://doi.org/10.1016/j.jconhyd.2004.06.003 CrossRefGoogle Scholar
  36. Muyzer, G., De Waal, E.C., Uitterlinden, A.G.: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59(3), 695–700 (1993)Google Scholar
  37. Ni, Z., Smit, M., Grotenhuis, T., Van Gaans, P., Rijnaarts, H.: Effectiveness of stimulating PCE reductive dechlorination: A step-wise approach. J. Contam. Hydrol. 164, 209–218 (2014).  https://doi.org/10.1016/j.jconhyd.2014.06.005 CrossRefGoogle Scholar
  38. Nijenhuis, I., Kuntze, K.: Anaerobic microbial dehalogenation of organohalides—state of the art and remediation strategies. Curr. Opin. Biotechnol. 38, 33–38 (2016).  https://doi.org/10.1016/j.copbio.2015.11.009 CrossRefGoogle Scholar
  39. Panagos, P., Hiederer, R., Van Liedekerke, M., Bampa, F.: Estimating soil organic carbon in Europe based on data collected through an European network. Ecol. Indic. 24, 439–450 (2013).  https://doi.org/10.1016/j.ecolind.2012.07.020 CrossRefGoogle Scholar
  40. Pooley, K.E., Blessing, M., Schmidt, T.C., Haderlein, S.B., Macquarrie, K.T.B., Prommer, H.: Aerobic biodegradation of chlorinated ethenes in a fractured bedrock aquifer: Quantitative assessment by compound-specific isotope analysis (CSIA) and reactive transport modeling. Environ. Sci. Technol. 43, 7458–7464 (2009).  https://doi.org/10.1021/es900658n CrossRefGoogle Scholar
  41. Scheutz, C., Durant, N.D., Dennis, P., Hansen, M.H., Jørgensen, T., Jakobsen, R., Cox, E.E., Bjerg, P.L.: Concurrent ethene generation and growth of Dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration. Environ. Sci. Technol. 42, 9302–9309 (2008).  https://doi.org/10.1021/es800764t CrossRefGoogle Scholar
  42. Schmidt, T.C., Jochmann, M.A.: Origin and fate of organic compounds in water: Characterization by compound-specific stable isotope analysis. Annu. Rev. Anal. Chem. (Palo Alto Calif) 5, 133–155 (2012).  https://doi.org/10.1146/annurev-anchem-062011-143143 CrossRefGoogle Scholar
  43. Schubert, T., Adrian, L., Diekert, G., Jena, U.: Organohalid-Atmung bei Mikroorganismen. BIOspektrum 22(5), 462–464 (2016).  https://doi.org/10.1007/s12268-016-0712-1 CrossRefGoogle Scholar
  44. Suthersan, S.S., Lutes, C.C., Palmer, P.L., Lenzo, F., Payne, F.C., Liles, D.S., Burdick, J.: Technical protocol for using soluble carbohydrates to enhance reductive dechlorination of chlorinated aliphatic hydrocarbons (2002). http://www.dtic.mil/docs/citations/ADA611470 Google Scholar
  45. Taş, N., Van Eekert, M.H.A., Schraa, G., Zhou, J., De Vos, W.M., Smidt, H.: Tracking functional guilds: „Dehalococcoides“ spp. in European river basins contaminated with hexachlorobenzene. Appl. Environ. Microbiol. 75, 4696–4704 (2009).  https://doi.org/10.1128/AEM.02829-08 CrossRefGoogle Scholar
  46. Taş, N., Van Eekert, M.H.A., De Vos, W.M., Smidt, H.: The little bacteria that can—Diversity, genomics and ecophysiology of „Dehalococcoides“ spp. in contaminated environments. Microb. Biotechnol. 3, 389–402 (2010).  https://doi.org/10.1111/j.1751-7915.2009.00147.x Google Scholar
  47. Vogel, T.M., Criddle, C.S., McCarty, P.: Transformation of halogenated aliphatic compounds. Environ. Sci. Technol. 21, 722–736 (1987)CrossRefGoogle Scholar
  48. Yang, Y., Cápiro, N.L., Marcet, T.F., Yan, J., Pennell, K.D., Löffler, F.E.: Organohalide respiration with chlorinated ethenes under low pH conditions. Environ. Sci. Technol. 51(15), 8579–8588 (2017).  https://doi.org/10.1021/acs.est.7b01510 CrossRefGoogle Scholar
  49. Zhao, S., Fernald, R.D.: Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1047–1064 (2005).  https://doi.org/10.1089/cmb.2005.12.1047 CrossRefGoogle Scholar
  50. Zinder, S.H.: Dehalococcoides has a dehalogenation complex. Environ. Microbiol. 18, 2773–2775 (2016).  https://doi.org/10.1111/1462-2920.13204 CrossRefGoogle Scholar
  51. Zwank, L., Berg, M., Schmidt, T.C., Haderlein, S.B.: Compound-specific carbon isotope analysis of volatile organic compounds in the low-microgram per liter range. Anal. Chem. 75, 5575–5583 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Daniel Buchner
    • 1
    Email author
  • Meenakshi Schweikhart
    • 1
  • Sebastian Behrens
    • 1
    • 3
  • Thomas Schöndorf
    • 2
  • Christine Laskov
    • 1
    • 4
  • Stefan B. Haderlein
    • 1
  1. 1.Zentrum für angewandte GeowissenschaftenEberhard-Karls-Universität TübingenTübingenDeutschland
  2. 2.HPC AGFreiburg i.Br.Deutschland
  3. 3.Department of Civil, Environmental, and Geo-engineeringUniversity of MinnesotaMinneapolisUSA
  4. 4.Fugro Consult GmbHMössingenDeutschland

Personalised recommendations