Advertisement

Der Onkologe

, Volume 25, Supplement 1, pp 54–60 | Cite as

Molekularpathologie zur Prädiktion von Prognose und Therapie bei Tumorerkrankungen

  • Christoph RöckenEmail author
Leitthema
  • 186 Downloads

Zusammenfassung

Hintergrund

Das Wissen über die molekularen Grundlagen von Krebs wird für die Differenzialdiagnostik, die Prognoseabschätzung und das Vorhersagen des Therapieansprechens genutzt.

Material und Methoden

Die Informationen beruhen auf Recherchen in PubMed® (U.S. National Library of Medicine®, Bethesda, MD, USA) und Fachliteratur.

Ergebnisse

Bei allen häufigen zerebralen und extrazerebralen Tumorarten ist die Anwendung der molekularen Diagnostik integraler Bestandteil der Patientenversorgung und in aktuellen nationalen und internationalen Leitlinienempfehlungen verankert. Trotz dieses medizinischen Fortschritts ist die Nachhaltigkeit der Therapieerfolge im palliativen Setting eingeschränkt. Die intratumorale genetische Heterogenität birgt das Risiko von Stichprobenfehlern bei der molekularen Diagnostik. Gleichzeitig verschafft sie dem Tumor die Möglichkeit, durch therapieinduzierte Anpassungsvorgänge (Selektion) Resistenzen zu entwickeln.

Schlussfolgerung

Zukünftige Studien werden zeigen, ob der Einsatz von Immuncheckpointinhibitoren hier einen Ausweg aufweist, indem Krebs ein dynamisches System entgegengestellt wird.

Schlüsselwörter

Neoplasien Molekulare zielgerichtete Therapie Molekulare diagnostische Testung Präzisionsmedizin Molekulare Sequenzdaten 

Molecular pathology in the prediction of prognosis and treatment in cancer

Abstract

Background

Knowledge about cancer genetics is now widely used for tumor classification, estimation of patient prognosis and the prediction of therapeutic response.

Materials and Methods

This review is based on a PubMed® (U.S. National Library of Medicine®, Bethesda, MD, USA) search and specialized literature.

Results

Molecular diagnostics has become routine practice in all common cerebral and extracerebral tumors and is incorporated in national and international guidelines on patient management. Despite these major advances, long-term patient outcome is often limited in the palliative setting. Genetic intratumoral heterogeneity carries the risk of sampling errors when it comes to the assessment of predictive biomarkers. In addition, heterogeneity facilitates adaption to therapy through clonal selection and ultimately therapy resistance.

Conclusion

Future studies will show whether immune checkpoint inhibitors are more suitable to battle an advanced highly dynamic disease.

Keywords

Neoplasms Molecular targeted therapy Molecular diagnostic testing Precision medicine Molecular sequence data  

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Röcken gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (Hrsg.) (2016) WHO classification of tumours of the central nervous system. International Agency for Research on Cancer, LyonGoogle Scholar
  2. 2.
    Aktipis CA, Boddy AM, Jansen G et al (2015) Cancer across the tree of life: Cooperation and cheating in multicellularity. Philos Trans R Soc Lond B Biol Sci 370:20140219CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Allgäuer M, Budczies J, Christopoulos P et al (2018) Implementing tumor mutational burden (TMB) analysis in routine diagnostics—a primer for molecular pathologists and clinicians. Transl Lung Cancer Res 7:703–715CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Amado RG, Wolf M, Peeters M et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634CrossRefPubMedGoogle Scholar
  5. 5.
    Bang YJ, Van CE, Feyereislova A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 376:687–697CrossRefPubMedGoogle Scholar
  6. 6.
    Baretton G, Dietel M, Gaiser T et al (2016) HER2-Testung beim Magenkarzinom – Ergebnisse eines deutschen Expertentreffens. Pathologe 37:361–366CrossRefPubMedGoogle Scholar
  7. 7.
    Bartley AN, Washington MK, Colasacco C et al (2017) HER2 testing and clinical decision making in gastroesophageal adenocarcinoma: Guideline from the College of American Pathologists, American Society for Clinical Pathology, and the American Society of Clinical Oncology. J Clin Oncol 35:446–464CrossRefGoogle Scholar
  8. 8.
    Binnewies M, Roberts EW, Kersten K et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24:541–550CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    De Roock W, Claes B, Bernasconi D et al (2010) Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 11:753–762CrossRefPubMedGoogle Scholar
  10. 10.
    Gerlinger M, Rowan AJ, Horswell S et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366:883–892CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Graham TA, Sottoriva A (2017) Measuring cancer evolution from the genome. J Pathol 241:183–191CrossRefPubMedGoogle Scholar
  12. 12.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70CrossRefGoogle Scholar
  13. 13.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144:646–674CrossRefGoogle Scholar
  14. 14.
    Helmink BA, Khan MAW, Hermann A et al (2019) The microbiome, cancer, and cancer therapy. Nat Med 25:377–388CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hofmann M, Stoss O, Shi D et al (2008) Assessment of a HER2 scoring system for gastric cancer: Results from a validation study. Histopathology 52:797–805CrossRefPubMedGoogle Scholar
  16. 16.
    Hyman DM, Piha-Paul SA, Won H et al (2018) HER kinase inhibition in patients with HER2- and HER3-mutant cancers. Nature 554:189–194CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hyman DM, Puzanov I, Subbiah V et al (2015) Vemurafenib in multiple nonmelanoma cancers with BRAF V600 mutations. N Engl J Med 373:726–736CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kalemkerian GP, Narula N, Kennedy EB et al (2018) Molecular testing guideline for the selection of patients with lung cancer for treatment with targeted tyrosine kinase inhibitors: American Society of Clinical Oncology Endorsement of the College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology clinical practice guideline update. J Clin Oncol 36:911–919CrossRefGoogle Scholar
  19. 19.
    Klapper W, Kreipe H (2015) Diagnostic molecular pathology of lymphatic and myeloid neoplasms. Pathologe 36:164–170CrossRefPubMedGoogle Scholar
  20. 20.
    Lee HH, Kim SY, Jung ES et al (2019) Mutation heterogeneity between primary gastric cancers and their matched lymph node metastases. Gastric Cancer 22:323–334CrossRefPubMedGoogle Scholar
  21. 21.
    Lordick F, Kang YK, Chung HC et al (2013) Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol 14:490–499CrossRefPubMedGoogle Scholar
  22. 22.
    Luchini C, Bibeau F, Ligtenberg MJL et al (2019) ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol.  https://doi.org/10.1093/annonc/mdz116 CrossRefPubMedGoogle Scholar
  23. 23.
    Lynch HT, Snyder CL, Shaw TG et al (2015) Milestones of Lynch syndrome: 1895–2015. Nat Rev Cancer 15:181–194CrossRefPubMedGoogle Scholar
  24. 24.
    Maley CC, Aktipis A, Graham TA et al (2017) Classifying the evolutionary and ecological features of neoplasms. Nat Rev Cancer 17:605–619CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Martincorena I, Fowler JC, Wabik A et al (2018) Somatic mutant clones colonize the human esophagus with age. Science 362:911–917CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Martincorena I, Roshan A, Gerstung M et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–886CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mathiak M, Warneke VS, Behrens HM et al (2017) Clinicopathologic characteristics of microsatellite instable gastric carcinomas revisited: Urgent need for standardization. Appl Immunohistochem Mol Morphol 25:12–24CrossRefPubMedGoogle Scholar
  28. 28.
    Munoz N, Bosch FX, de Sanjose S et al (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348:518–527CrossRefPubMedGoogle Scholar
  29. 29.
    Neumann JH, Jung A, Kirchner T (2015) Molecular pathology of colorectal cancer. Pathologe 36:137–144CrossRefPubMedGoogle Scholar
  30. 30.
    Ott PA, Bang YJ, Piha-Paul SA et al (2019) T‑cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol 37:318–327CrossRefGoogle Scholar
  31. 31.
    Schaefer IM, Marino-Enriquez A, Fletcher JA (2017) What is new in gastrointestinal stromal tumor? Adv Anat Pathol 24:259–267CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Schmitz K, Schildhaus HU (2015) Molecular pathology of soft tissue tumors: Contribution to diagnosis and therapy prediction. Pathologe 36:126–136CrossRefPubMedGoogle Scholar
  33. 33.
    Smyth EC, Wotherspoon A, Peckitt C et al (2017) Mismatch repair deficiency, microsatellite instability, and survival: An exploratory analysis of the medical research council adjuvant gastric infusional chemotherapy (MAGIC) trial. JAMA Oncol 3:1197–1203CrossRefPubMedGoogle Scholar
  34. 34.
    Topalian SL, Drake CG, Pardoll DM (2015) Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–461CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Van CE, Kohne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417CrossRefGoogle Scholar
  36. 36.
    van der Velden DL, van Herpen CML, van Laarhoven HWM et al (2017) Molecular tumor boards: Current practice and future needs. Ann Oncol 28:3070–3075CrossRefPubMedGoogle Scholar
  37. 37.
    van der Wekken AJ, Saber A, Hiltermann TJ et al (2016) Resistance mechanisms after tyrosine kinase inhibitors afatinib and crizotinib in non-small cell lung cancer, a review of the literature. Crit Rev Oncol Hematol 100:107–116CrossRefPubMedGoogle Scholar
  38. 38.
    Wakatsuki T, Yamamoto N, Sano T et al (2018) Clinical impact of intratumoral HER2 heterogeneity on trastuzumab efficacy in patients with HER2-positive gastric cancer. J Gastroenterol 53:1186–1195CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Warneke VS, Behrens HM, Boger C et al (2013) Her2/neu testing in gastric cancer: Evaluating the risk of sampling errors. Ann Oncol 24:725–733CrossRefPubMedGoogle Scholar
  40. 40.
    Weichert W (2018) Molecular predictors in immune oncology. Pathologe 39:546–555CrossRefPubMedGoogle Scholar
  41. 41.
    Yagi S, Wakatsuki T, Yamamoto N et al (2019) Clinical significance of intratumoral HER2 heterogeneity on trastuzumab efficacy using endoscopic biopsy specimens in patients with advanced HER2 positive gastric cancer. Gastric Cancer 22:518–525CrossRefGoogle Scholar
  42. 42.
    You EL, Henry M, Zeitouni AG (2019) Human papillomavirus-associated oropharyngeal cancer: review of current evidence and management. Curr Oncol 26:119–123CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für PathologieChristian-Albrechts-Universität KielKielDeutschland

Personalised recommendations