Advertisement

Wiener klinisches Magazin

, Volume 22, Issue 1, pp 12–21 | Cite as

Delir beim Intensivpatienten

Eine multiprofessionelle Herausforderung
  • Norbert ZorembaEmail author
  • Marc Coburn
  • Gereon Schälte
Anästhesie & Intensivmedizin
  • 172 Downloads

Zusammenfassung

Delir ist die häufigste Form einer zerebralen Dysfunktion bei Patienten auf der Intensivstation und ein medizinischer Notfall, der vermieden oder zeitnah diagnostiziert und therapiert werden muss. Nach heutigem Kenntnisstand scheint die Entwicklung eines Delirs durch ein Zusammenspiel von erhöhter Vulnerabilität (Prädisposition) und der gleichzeitigen Exposition gegenüber delirogenen Faktoren bedingt zu sein. Da in der klinischen Routine ein Delir häufig übersehen wird, sollte engmaschig ein Delirscreening erfolgen. Wegen der engen Verknüpfung zwischen Delir, Agitation und Schmerz muss analog zum Delirscreening mindestens alle 8 h zusätzlich eine Evaluation der Sedierung und der Analgesie erfolgen. In der Prävention und Therapie des Delirs wird nach heutigem Kenntnisstand ein multifaktorielles und multiprofessionelles Vorgehen favorisiert. Hierbei hat die nichtmedikamentöse Intervention durch Frühmobilisation, Reorientierung, Schlafverbesserung, adäquate Schmerztherapie und Vermeidung einer Polypharmazie einen hohen Stellenwert. In der symptomorientierten medikamentösen Delirtherapie finden, in Abhängigkeit von dem klinischen Bild, unterschiedliche Substanzen Anwendung. Um diese diagnostischen und therapeutischen Ziele zu erreichen, ist ein interdisziplinäres Behandlungsteam, bestehend aus Intensivpflege, Intensivärzten, Stationsapothekern, Physiotherapeuten, Ernährungsspezialisten und Psychiatern notwendig, um den Anforderungen des Patienten und deren Angehörigen gerecht zu werden.

Schlüsselwörter

Hypothese CAM-ICU Screening Schmerz Agitation Nichtmedikamentöse Therapie 

Delirium in intensive care patients

A multiprofessional challenge

Abstract

Delirium is the most common form of cerebral dysfunction in intensive care patients and is a medical emergency that must be avoided or promptly diagnosed and treated. According to current knowledge the development of delirium seems to be caused by an interplay between increased vulnerability (predisposition) and simultaneous exposure to delirogenic factors. Since delirium is often overlooked in the clinical routine, a continuous screening for delirium should be performed. Due to the close connection between delirium, agitation and pain, sedation and analgesia must be evaluated at least every 8 h analogous to delirium screening. According to current knowledge, a multifactorial and multiprofessional approach is favored in the prevention and treatment of delirium. Non-pharmaceutical interventions through early mobilization, reorientation, sleep improvement, adequate pain therapy and avoidance of polypharmacy are of great importance. Depending on the clinical picture, different substances are used in symptom-oriented drug treatment of delirium. In order to achieve these diagnostic and therapeutic goals, an interdisciplinary treatment team consisting of intensive care, intensive care physicians, ward pharmacists, physiotherapists, nutrition specialists and psychiatrists is necessary in order to meet the requirements of the patient and their relatives.

Keywords

Hypothesis CAM-ICU Screening Pain Agitation Non-drug treatment 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

N. Zoremba, M. Coburn und G. Schälte geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Brummel NE, Girard TD (2013) Preventing delirium in the intensive care unit. Crit Care Clin 29:51–65PubMedPubMedCentralGoogle Scholar
  2. 2.
    Ely EW, Inouye SK, Bernard GR et al (2001) Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA 286:2703–2710PubMedGoogle Scholar
  3. 3.
    Adamis D, Rooney S, Meagher D et al (2015) A comparison of delirium diagnosis in elderly medical inpatients using the CAM, DRS-R98, DSM-IV and DSM-5 criteria. Int Psychogeriatr 27:883–889PubMedGoogle Scholar
  4. 4.
    Maldonado JR (2017) Delirium and pathophysiology: An updated hypothesis of the etiology of acute brain failure. Int J Geriatr Psychiatry.  https://doi.org/10.1002/gps.4823 PubMedGoogle Scholar
  5. 5.
    Luetz A, Heymann A, Radtke FM et al (2010) Was wir nicht messen, detektieren wir meist auch nicht. AINS 45:106–111Google Scholar
  6. 6.
    S3-Leitlinie (2015) Analgesie, Sedierung und Delirmanagement in der Intensivmedizin. AWMF Register Nr.:001/012Google Scholar
  7. 7.
    Ely EW, Shintani A, Truman B et al (2004) Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 291:1753–1762PubMedGoogle Scholar
  8. 8.
    Pisani MA, Kong SY, Kasl SV et al (2009) Days of delirium are associated with 1‑year mortality in an older intensive care unit population. Am J Respir Crit Care Med 180:1092–1097PubMedPubMedCentralGoogle Scholar
  9. 9.
    Pandharipande PP, Girard TD, Jackson JC et al (2013) Long-term cognitive impairment after critical illness. N Engl J Med 369:1306–1316PubMedPubMedCentralGoogle Scholar
  10. 10.
    Levkoff S, Liptzin B, Cleary P et al (1996) Subsyndromal delirium. Am J Geriatr Psychiatry 4:320–329PubMedGoogle Scholar
  11. 11.
    Donovan AL, Aldrich M, Gross AK (2018) Interprofessional care and teamwork in the ICU. Crit Care Med 46:980–990PubMedGoogle Scholar
  12. 12.
    Jenewein J, Büchi S (2007) Neurobiologische und pathophysiologische Grundlagen des Delirs. Schweiz Arch Neurol Psychiatr 158:360–367Google Scholar
  13. 13.
    Fong TG, Tulebaev SR, Inouye SK (2009) Delirium in elderly adults: diagnosis, prevention and treatment. Nat Rev Neurol 5:210–220PubMedPubMedCentralGoogle Scholar
  14. 14.
    Trzepacz PT (2000) Is there a final common neural pathway in delirium? Focus on acetylcholine and dopamine. Semin Clin Neuropsychiatry 5:132–148PubMedGoogle Scholar
  15. 15.
    Hilger E, Fischer P (2002) Pathophysiologische Korrelate deliranter Syndrome. J Neurol Neurochir Psychiatr 3:32–40Google Scholar
  16. 16.
    Von Haken R, Gruß M, Plaschke K et al (2010) Delir auf der Intensivstation. Anästhesist 59:235–247Google Scholar
  17. 17.
    Han , McCusker J, Cole M et al (2001) Use of medications with anticholinergic effect predicts clinical severity of delirium symptoms in older medical inpatients. Arch Intern Med 161:1099–1105PubMedGoogle Scholar
  18. 18.
    Mulsant BH, Pollock BG, Kishner M et al (2003) Serum anticholinergic activity in a community-based sample of older adults: relationship with cognitive performance. Arch Gen Psychiatry 60:198–203PubMedGoogle Scholar
  19. 19.
    Calabresi P, Picconi B, Parnetti L et al (2006) A convergent model for cognitive dysfunctions in Parkinson’s disease: the critical dopamine-acetylcholine synaptic balance. Lancet Neurol 5:974–983PubMedGoogle Scholar
  20. 20.
    Van der Mast RC, Fekkes D (2000) serotonin and amino acids: partners in delirium pathophysiology? Semin Clin Neuropsychiatry 5:125–131PubMedGoogle Scholar
  21. 21.
    Pendlebury ST, Lovett NG, Smith SC et al (2015) Observational, longitudinal study of delirium in consecutive unselected acute medical admissions: age-specific rates and associated factors, mortality and re-admission. BMJ Open 5:e7808PubMedPubMedCentralGoogle Scholar
  22. 22.
    Pandharipande P, Shintani A, Peterson J et al (2006) Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology 1100:781–787Google Scholar
  23. 23.
    Kelly KM, Nadon NL, Morrison JH et al (2006) The neurobiology of aging. Epilepsy Res 68(Suppl.1):5–20Google Scholar
  24. 24.
    Inouye S, Zhang Y, Jones R et al (2007) Risk factors for delirium at discharge: development and validation of a predictive model. Arch Intern Med 167:1406–1413PubMedGoogle Scholar
  25. 25.
    Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39:687–699PubMedGoogle Scholar
  26. 26.
    Cerejeira J, Firmino H, Vaz-Serra A et al (2010) The neuroinflammatory hypothesis of delirium. Acta Neuropathol 119:737–754PubMedGoogle Scholar
  27. 27.
    de Rooji SE, van Munster BC, Korevaar JC et al (2007) Cytokines and acute phase response in delirium. J Psychosom Res 62:521–525Google Scholar
  28. 28.
    Beloosesky Y, Hendel D, Weiss A et al (2007) Cytokines and C‑reactive production in hip-fracture-operated elderly patients. J Gerontol 62:420–426Google Scholar
  29. 29.
    Uchikado H, Akiyama H, Kondo H et al (2004) Activation of vascular endothelial cells and perivascular cells by systemic inflammation – an immunohistochemical study of postmortem human brain tissues. Acta Neuropathol 107:341–351PubMedGoogle Scholar
  30. 30.
    Hshieh TT, Fong TG, Marcantonio ER et al (2008) Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. J Gerontol A Biol Sci Med Sci 63:764–772PubMedPubMedCentralGoogle Scholar
  31. 31.
    Vendemiale G, Grattagliano I, Altomare E (1999) An update on the role of free radicals and antioxidant defense in human disease. Int J Clin Lab Res 29:49–55PubMedGoogle Scholar
  32. 32.
    Karlidag R, Unal S, Sezer OH et al (2006) The role of oxidative stress in postoperative delirium. Gen Hosp Psychiatry 28:418–423PubMedGoogle Scholar
  33. 33.
    Berr C, Balansard B, Arnaud J et al (2000) Cognitive decline is associated with systemic oxidative stress: the EVA study. J Am Geriatr Soc 48:1285–1291PubMedGoogle Scholar
  34. 34.
    Siesjo BK (1984) Cerebral circulation and metabolism. J Neurosurg 60:883–908PubMedGoogle Scholar
  35. 35.
    Gibson GE, Blass JP (1976) Impaired synthesis of acetylcholine in brain accompanying mild hypoxia and hypoglycemia. J Neurochem 27:37–42PubMedGoogle Scholar
  36. 36.
    Vyas S, Rodrigues AJ, Silva JM et al (2016) Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration. Neural Plast 2016:6391686PubMedPubMedCentralGoogle Scholar
  37. 37.
    Maclullich AM, Ferguson KJ, Miller T et al (2008) Unravelling the pathophysiology of delirium: a focus on the role of aberrant stress responses. J Psychosom Res 65:229–238PubMedPubMedCentralGoogle Scholar
  38. 38.
    O’Keffe ST, Devlin JG (1994) Delirium and the dexamethasone suppression test in the elderly. Neuropsychobiology 30:153–156Google Scholar
  39. 39.
    McIntosh TK, Bush HL, Yeston NS et al (1985) Beta-endorphin, cortisol and postoperative delirium: a preliminary report. Psychoneuroendocrinology 10:303–313PubMedGoogle Scholar
  40. 40.
    McEwen BS, Bowles NP, Gray JD et al (2015) Mechanisms of stress in the brain. Nat Neurosci 18:1353–1363PubMedPubMedCentralGoogle Scholar
  41. 41.
    Maldonado JR (2013) Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry 21:1190–1222PubMedGoogle Scholar
  42. 42.
    McEwen BS (2006) Sleep deprivation as a neurobiologic and physiologic stressor: allostasis and allostatic load. Metabolism 55:20–23Google Scholar
  43. 43.
    Mistraletti G, Carloni E, Cigada M et al (2008) Sleep and delirium in the intensive care unit. Minerva Anestesiol 74:329–333PubMedGoogle Scholar
  44. 44.
    Miyazaki T, Kuwano H, Kato H et al (2003) Correlation between serum melatonin circadian rhythm and intensive care unit psychosis after thoracic esophagectomy. Surgery 133:662–668PubMedGoogle Scholar
  45. 45.
    Chen S, Shi L, Liang F et al (2016) Exogenous melatonin for delirium prevention: a meta-analysis of randomized controlled trails. Mol Neurobiol 53:4046–4053PubMedGoogle Scholar
  46. 46.
    Reade MC, Finfer S (2014) Sedation and delirium in the intensive care unit. N Engl J Med 370:444–454PubMedGoogle Scholar
  47. 47.
    Morandi A, Piva S, Ely EW et al (2017) Worldwide survey of the „Assessing pain, both spontaneous awakening and breathing trials, choice of drugs, delirium monitoring/management, early exercise/mobility, and family empowerment“ (ABCDEF) Bundle. Crit Care Med 45:1111–1122Google Scholar
  48. 48.
    Barr J, Fraser GL, Puntillo K et al (2013) Clinical practice guidelines for the management of pain, agitation and delirium in adult patients in the intensive care unit. Crit Care Med 41:263–306PubMedGoogle Scholar
  49. 49.
    Pandharipande P, Cotton BA, Shintani A et al (2007) Motoric subtypes of delirium in mechanically ventilated surgical and trauma intensive care unit patients. Intensive Care Med 33:1726–1731PubMedGoogle Scholar
  50. 50.
    Luetz A, Balzer F, Radtke FM et al (2014) Delirium, sedation and analgesia in the intensive care unit: a multinational, two-part survey among intensivists. PLoS ONE 9:e110935PubMedPubMedCentralGoogle Scholar
  51. 51.
    Plaschke K, Petersen KA, Frankenhauser S et al (2016) The impact of plasma cholinergic enzyme activity and other risk factors for the development of delirium in patients receiving palliative care. J Pain Symptom Manage 52:525–532PubMedGoogle Scholar
  52. 52.
    Luetz A, Heymann A, Radkte FM et al (2010) Different assessment tools for intensive care unit delirium: which score to use? Crit Care Med 38:409–418PubMedGoogle Scholar
  53. 53.
    Radkte FM, Franck M, Oppermann S et al (2009) Die Intensive Care Delirium Screening Checklist (ICDSC) Richtlinienkonforme Übersetzung und Validierung einer intensivmedizinischen Delirium-Checkliste. AINS 2:80–86Google Scholar
  54. 54.
    Khan BA, Perkins AJ, Gao S et al (2017) The confusion assessment method for the ICU-7 delirium severity scale: a novel delirium severity instrument for use in the ICU. Crit Care Med 45:851–857PubMedPubMedCentralGoogle Scholar
  55. 55.
    Inouye SK, Bogardus ST, Charpentier PA et al (1999) A multicomponent intervention to prevent delirium in hospitalized older patients. N Engl J Med 340:669–676PubMedGoogle Scholar
  56. 56.
    Jablonski J, Gray J, Miano T et al (2017) Pain, agitation and delirium guidelines: Interprofessional perspectives to translate the evidence. Dimens Crit Care Nurs 36:164–173PubMedGoogle Scholar
  57. 57.
    Slatore CG, Hansen L, Ganzini L et al (2012) Communication by nurses in the intensive care unit: qualitative analysis of domains of patient-centered care. Am J Crit Care 21:410–418PubMedPubMedCentralGoogle Scholar
  58. 58.
    Guo Y, Fan Y (2016) A preoperative, nurse-led intervention program reduces acute postoperative delirium. J Neurosci Nurs 48:229–235PubMedGoogle Scholar
  59. 59.
    Schweickert WD, Hall J (2007) ICU-acquired weakness. Chest 131:1541–1549PubMedGoogle Scholar
  60. 60.
    Schweickert WD, Pohlmann MC, Pohlmann AS et al (2009) Early physical and occupational therapy in mechanically ventilated, critical ill patients: a randomized controlled trail. Lancet 373:1874–1882PubMedGoogle Scholar
  61. 61.
    Inouye SK, Bogardus ST, Williams CS et al (2003) The role of adherence on the effectiveness of nonpharmacologic interventions. Arch Intern Med 163:958–964PubMedGoogle Scholar
  62. 62.
    Alberda C, Gramlich L, Jones N et al (2009) The relationship between nutritional intake and clinical outcomes in critically ill patients: results of an international multicenter observational study. Intensive Care Med 35:1728–1737PubMedGoogle Scholar
  63. 63.
    Zoremba N (2017) Delirmanagement in der Intensivmedizin – Nichtmedika-mentöse Therapieoptionen. Med Klein Intensivmed Notfmed 112:320–325Google Scholar
  64. 64.
    Luetz A, Weiss B, Penzel T et al (2016) Feasibility of noise reduction by a modification in ICU environment. Physiol Meas 37:1041–1055PubMedGoogle Scholar
  65. 65.
    Hu RF, Jiang XY, Hegadoren KM et al (2015) Effects of earplugs and eye masks combined with relaxing music on sleep, melatonin and cortisol levels in ICU patients: a randomized controlled trial. Crit Care 19:115PubMedPubMedCentralGoogle Scholar
  66. 66.
    Czaplik M, Rossaint R, Kaliciak J et al (2016) Psychoacoustic analysis of noise and the application of earplugs in an ICU: a randomized controlled clinical trial. Eur J Anaesthesiol 33:14–21PubMedGoogle Scholar
  67. 67.
    Patel J, Baldwin J, Bunting P et al (2014) The effect of a multicomponent multidisciplinary bundle of interventions on sleep and delirium in medical and surgical intensive care patients. Anaesthesia 69:540–549PubMedGoogle Scholar
  68. 68.
    Böhm S (2012) Cholinerge Systeme. In: Freissmuth M (Hrsg) Pharmakologie und Toxikologie. Springer, HeidelbergGoogle Scholar
  69. 69.
    Pandharipande P, Shintani A, Peterson J et al (2006) Lorazepam is an independent risk factor for transitioning to delirium in intensive care unit patients. Anesthesiology 104:21–26PubMedGoogle Scholar
  70. 70.
    Louzon P, Jennings H, Ali M et al (2017) Impact of pharmacist management of pain, agitation, and delirium in the intensive care unit through participation in multidisciplinary bundle rounds. Am J Health Syst Pharm 74:253–262PubMedGoogle Scholar
  71. 71.
    Siddiqi N, Harrison JK, Clegg A et al (2016) Interventions for preventing delirium in hospitalized non ICU-patients. Cochrane Database Syst Rev 3:CD5563PubMedGoogle Scholar
  72. 72.
    Van den Bloogaard M, Slooter AJC, Brüggemann RJM et al (2018) Effect of haloperidol on survival among critically ill adults with a high risk of delirium: The REDUCE randomized clinical trial. JAMA 319:680–690Google Scholar
  73. 73.
    Chen S, Shi L, Liang F et al (2016) Endogenous melatonin for delirium prevention: a meta-analysis of randomized controlled trails. Mol Neurobiol 53:4046–4053PubMedGoogle Scholar
  74. 74.
    Su X, Meng ZT, Wu XH et al (2016) Demedetomidine for prevention of delirium in elderly patients after non-cardiac surgery: a randomized, double-blind, placebo-controlled trail. Lancet 388:1893–1902PubMedGoogle Scholar
  75. 75.
    Skrobik Y, Duprey MS, Hill NS et al (2018) low-dose nocturnal dexmedetomidine prevents ICU delirium: a randomized, placebo-controlled trail. Am J Respir Crit Care Med.  https://doi.org/10.1164/rccm.201710-1995OC PubMedGoogle Scholar
  76. 76.
    Duan X, Coburn M, Rossaint R et al (2018) Efficacy of perioperative dexmedetomidine on postoperative delirium: systematic review and meta-analysis with trial sequential analysis of randomised controlled trials. Br J Anaesth 121:384–397PubMedGoogle Scholar
  77. 77.
    Shelton KT, Qu J, Bilotta F et al (2018) Minimizing ICU neurological dysfunction with dexmedetomidine-induced sleep (MINDDS): protocol for a randomised, double-blind, parallel-arm, placebo-controlled trial. BMJ Open 8:e20316PubMedPubMedCentralGoogle Scholar
  78. 78.
    Barr J, Pandharipande PP (2013) The pain, agitation, and delirium care bundle: synergistic benefits of implementing the 2013 pain, agitation, and delirium guidelines in an integrated and interdisciplinary fashion. Crit Care Med 41:99–115Google Scholar
  79. 79.
    Reade MC, Eastwood GM, Bellomo R et al (2016) Effect of dexmede-tomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trail. JAMA 315:1460–1468PubMedGoogle Scholar
  80. 80.
    Lonergan E, Luxenberg J, Areosa Sastre A (2009) Benzodiazepines for delirium. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD6379 PubMedGoogle Scholar
  81. 81.
    Lonergan E, Britton AM, Luxenberg J et al (2007) Antipsychotics for delirium. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD5594 PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für Anästhesiologie, operative Intensivmedizin und SchmerztherapieSankt Elisabeth Hospital GüterslohGüterslohDeutschland
  2. 2.Klinik für AnästhesiologieUniversitätsklinikum der RWTH AachenAachenDeutschland

Personalised recommendations