Amino Acids

pp 1–9 | Cite as

Design, synthesis and valued properties of surfactin oversimplified analogues

  • Thaina A. Lima
  • Augusto Etchegaray
  • M. Teresa MachiniEmail author
Original Article


Surfactins are important lipopeptides produced by Bacillus subtilis that present strong surface activity. These biosurfactants find applications in various fields, from environmental remediation to medicine. The use of surfactins in remediation is hampered by production costs; the medical applications are also reframed because of the hemolytic activity of the cyclic peptide. To reduce costs and working time, the present work focused on the design, chemical synthesis and characterization of simple linear variants of surfactins having only l-amino acids and lauric acid at the N-terminal. Carboxyl-free and amidated analogues with negative, null and positive net charges at physiological pH were successfully obtained. The synthetic isoforms of surfactins showed high surface activity and ability to inhibit both growth and adhesion of Streptococcus mutans cells. Therefore, these properties make these low-cost synthetic peptides relevant and promising new compounds for science, industry and, mainly, dental care.


Surfactin Synthetic lipopeptides Surface activity Antimicrobial activity Cell anti-adhesion activity Streptococcus mutans 



The authors are grateful to FAPESP for the research grants (2015/14360-4 to MTM and 2013/20570-6 to AE) and post-doctoral fellowship to TAL (2014/06784-6). They also thank CNPq for the research fellowship to MTM (308658/2015) and Dr. Cleber W. Liria for performing the mass spectrometry and amino acid analyses.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This is not included as the article does not contain any studies with human participants or animals performed by any of the authors.


  1. Arciola CR, Campoccia D, Speziale P et al (2012) Biofilm formation in Staphylococcus implant infections. a review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33:5967–5982. CrossRefPubMedGoogle Scholar
  2. Arima K, Kakinuma A, Tamura G (1968) Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun 31:488–494. CrossRefPubMedGoogle Scholar
  3. Banat IM, Franzetti A, Gandolfi I et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87:427–444. CrossRefPubMedGoogle Scholar
  4. Banat IM, De Rienzo MAD, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98:9915–9929. CrossRefPubMedGoogle Scholar
  5. Biniarz P, Łukaszewicz M, Janek T (2016) Screening concepts, characterization and structural analysis of microbial-derived bioactive lipopeptides: a review. Crit Rev Biotechnol. CrossRefPubMedGoogle Scholar
  6. Bjarnsholt T, Kirketerp-Møller K, Jensen PØ et al (2008) Why chronic wounds will not heal: a novel hypothesis. Wound Repair Regen 16:2–10. CrossRefPubMedGoogle Scholar
  7. Bodour AA, Miller-Maier RM (1998) Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32:273–280. CrossRefGoogle Scholar
  8. Bucci AR, Marcelino L, Mendes RK, Etchegaray A (2018) The antimicrobial and antiadhesion activities of micellar solutions of surfactin, CTAB and CPCl with terpinen-4-ol: applications to control oral pathogens. World J Microbiol Biotechnol 34:86. CrossRefPubMedGoogle Scholar
  9. Burch AY, Browne PJ, Dunlap CA et al (2011) Comparison of biosurfactant detection methods reveals hydrophobic surfactants and contact-regulated production. Environ Microbiol 13:2681–2691. CrossRefPubMedGoogle Scholar
  10. Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745. CrossRefPubMedGoogle Scholar
  11. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322CrossRefGoogle Scholar
  12. Costerton W, Veeh R, Shirtliff M et al (2003a) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Costerton W, Veeh R, Shirtliff M et al (2003b) The application of biofilm science to the study and control of chronic bacterial infections. J Clin Invest 112:1466–1477. CrossRefPubMedPubMedCentralGoogle Scholar
  14. da Silva ER, Alves WA, Castelletto V et al (2015) Self-assembly pathway of peptide nanotubes formed by a glutamatic acid-based bolaamphiphile. Chem Commun 51:11634–11637. CrossRefGoogle Scholar
  15. de Araujo LV, Guimarães CR, da Marquita RLS et al (2016) Rhamnolipid and surfactin: anti-adhesion/antibiofilm and antimicrobial effects. Food Control 63:171–178. CrossRefGoogle Scholar
  16. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193CrossRefGoogle Scholar
  17. Dufour S, Deleu M, Nott K et al (2005) Hemolytic activity of new linear surfactin analogs in relation to their physico-chemical properties. Biochim Biophys Acta Gen Subj 1726:87–95. CrossRefGoogle Scholar
  18. Fracchia L, Banat JJ, Cavallo M et al (2015) Potential therapeutic applications of microbial surface-active compounds. AIMS Bioeng 2:144–162. CrossRefGoogle Scholar
  19. Francius G, Dufour S, Deleu M et al (2008) Nanoscale membrane activity of surfactins: influence of geometry, charge and hydrophobicity. Biochim Biophys Acta 1778:2058–2068. CrossRefPubMedGoogle Scholar
  20. Gristina AG, Oga M, Webb LX, Hobgood CD (1985) Adherent bacterial colonization in the pathogenesis of osteomyelitis. Science 228:990–993CrossRefGoogle Scholar
  21. Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62:915–921PubMedPubMedCentralGoogle Scholar
  22. He J, Eckert R, Pharm T et al (2007) Novel synthetic antimicrobial peptides against Streptococcus mutans. Antimicrob Agents Chemother 51:1351–1358. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hyde JA, Darouiche RO, Costerton JW (1998) Strategies for prophylaxis against prosthetic valve endocarditis: a review article. J Heart Valve Dis 7:316–326PubMedGoogle Scholar
  24. Inès M, Dhouha G (2015) Lipopeptide surfactants: production, recovery and pore forming capacity. Peptides 71:100–112. CrossRefPubMedGoogle Scholar
  25. Isturiz R (2008) Global resistance trends and the potential impact on empirical therapy. Int J Antimicrob Agents 32(Suppl 4):S201–S206. CrossRefPubMedGoogle Scholar
  26. Janek T, Łukaszewicz M, Krasowska A (2012) Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12:24. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kaiser E, Colescott RL, Bossinger CD, Cook PI (1970) Color test for detection of free terminal amino groups in the solid-phase synthesis of peptides. Anal Biochem 34:595–598. CrossRefPubMedGoogle Scholar
  28. Khan R, Zakir M, Khanam Z et al (2010) Novel compound from Trachyspermum ammi (Ajowan caraway) seeds with antibiofilm and antiadherence activities against Streptococcus mutans: a potential chemotherapeutic agent against dental caries. J Appl Microbiol 109:2151–2159. CrossRefPubMedGoogle Scholar
  29. LaRock CN, Nizet V (2015) Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim Biophys Acta Biomembr 1848:3047–3054. CrossRefGoogle Scholar
  30. Liu J, Li W, Zhu X et al (2019) Surfactin effectively inhibits Staphylococcus aureus adhesion and biofilm formation on surfaces. Appl Microbiol Biotechnol 103:4565–4574. CrossRefPubMedGoogle Scholar
  31. Loffredo C, Assunção NA, Gerhardt J, Miranda MTM (2009) Microwave-assisted solid-phase peptide synthesis at 60 degrees C: alternative conditions with low enantiomerization. J Pept Sci 15:808–817. CrossRefPubMedGoogle Scholar
  32. Machado A, Liria CW, Proti PB et al (2004) Sínteses química e enzimática de peptídeos: princípios básicos e aplicações. Quim Nova 27:781–789. CrossRefGoogle Scholar
  33. Maget-Dana R, Ptak M (1995) Interactions of surfactin with membrane models. Biophys J 68:1937–1943. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Marcelino L, Puppin-Rontani J, Coutte F et al (2019) Surfactin application for a short period (10/20 s) increases the surface wettability of sound dentin. Amino Acids. CrossRefPubMedGoogle Scholar
  35. Marchant R, Banat IM (2012a) Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett 34:1597–1605. CrossRefPubMedGoogle Scholar
  36. Marchant R, Banat IM (2012b) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565. CrossRefPubMedGoogle Scholar
  37. Miquel S, Lagrafeuille R, Souweine B, Forestier C (2016) Anti-biofilm activity as a health issue. Front Microbiol. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mukherjee P, Chandra J (2004) Biofilm resistance. Drug Resist Updat 7:301–309. CrossRefPubMedGoogle Scholar
  39. Mulligan CN, Yong RN, Gibbs BF et al (1999) Metal removal from contaminated soil and sediments by the biosurfactant surfactin. Environ Sci Technol 33:3812–3820. CrossRefGoogle Scholar
  40. Nitschke M, Pastore GM (2002) Biossurfactantes: propriedades e aplicações. Quim Nova 25:772–776. CrossRefGoogle Scholar
  41. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563. CrossRefPubMedGoogle Scholar
  42. Polyiam P, Photisap C, Boottanun P et al (2016) Antimicrobial and antiadhesive activities of the crude biosurfactant From Bacillus Sp. against clinical isolates of Acinetobacter baumannii from Srinagarind Hospital. Srinagarind Med J 31:222–227Google Scholar
  43. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. CrossRefPubMedGoogle Scholar
  44. Razafindralambo H, Dufour S, Paquot M, Deleu M (2009) Thermodynamic studies of the binding interactions of surfactin analogues to lipid vesicles. J Therm Anal Calorim 95:817–821. CrossRefGoogle Scholar
  45. Remuzgo C, Andrade GFS, Temperini MLA, Miranda MTM (2009) Acanthoscurrin fragment 101-132: total synthesis at 60°C of a novel difficult sequence. Biopolymers 92:65–75. CrossRefPubMedGoogle Scholar
  46. Remuzgo C, Oewel TS, Daffre S et al (2014) Chemical synthesis, structure-activity relationship, and properties of shepherin I: a fungicidal peptide enriched in glycine-glycine-histidine motifs. Amino Acids 46:2573–2586. CrossRefPubMedGoogle Scholar
  47. Rivardo F, Turner RJ, Allegrone G et al (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 83:541–553. CrossRefPubMedGoogle Scholar
  48. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Mini Rev Environ Microbiol 3:229–236. CrossRefGoogle Scholar
  49. Schaller KD, Fox SL, Bruhn DF et al (2004) Characterization of surfactin from Bacillus subtilis for application as an agent for enhanced oil recovery. Appl Biochem Biotechnol 113–116:827–836CrossRefGoogle Scholar
  50. Siddiq DM, Darouiche RO (2012) New strategies to prevent catheter-associated urinary tract infections. Nat Rev Urol 9:305–314. CrossRefPubMedGoogle Scholar
  51. Song B, Rong Y-J, Zhao M-X, Chi Z-M (2013) Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic. Appl Microbiol Biotechnol 97:7141–7150. CrossRefPubMedGoogle Scholar
  52. Souza MP, Tavares MFM, Miranda MTM (2004) Racemization in stepwise solid-phase peptide synthesis at elevated temperatures. Tetrahedron 60:4671–4681. CrossRefGoogle Scholar
  53. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet (London, England) 358:135–138CrossRefGoogle Scholar
  54. Sun W, Wang Y, Zhang W et al (2018) Novel surfactant peptide for removal of biofilms. Colloids Surfaces B Biointerfaces 172:180–186. CrossRefPubMedGoogle Scholar
  55. Svobodová G, Radomír S, Jaroslava Č (2011) Surfactin—novel solutions for global issues. In: Olsztynska S (ed) Biomedical engineering trends, research and technologies. In Tech, Zurich, pp 305–330Google Scholar
  56. Varanda LM, Miranda MT (1997) Solid-phase peptide synthesis at elevated temperatures: a search for and optimized synthesis condition of unsulfated cholecystokinin-12. J Pept Res 50:102–108CrossRefGoogle Scholar
  57. Walter V, Syldatk C, Hausmann R (2010) Screening concepts for the isolation of biosurfactant producing microorganisms. In: Sen R (ed) Biosurfactants. Springer, New York, NY, pp 1–13Google Scholar
  58. Yang L, Liu Y, Wu H et al (2012) Combating biofilms. FEMS Immunol Med Microbiol 65:146–157. CrossRefPubMedGoogle Scholar
  59. Yuan L, Zhang S, Peng J et al (2019) Synthetic surfactin analogues have improved anti-PEDV properties. PLoS One 14(4):e0215227. CrossRefPubMedPubMedCentralGoogle Scholar
  60. Zhang L, Xing X, Ding J et al (2017) Surfactin variants for intra-intestinal delivery of insulin. Eur J Pharm Biopharm 115:218–228. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biochemistry, Institute of ChemistryUniversity of São Paulo (USP)São PauloBrazil
  2. 2.Center for Life Sciences, Postgraduate Program in Health SciencesPontifical Catholic University of Campinas (PUC-Campinas)CampinasBrazil

Personalised recommendations