Amino Acids

, Volume 51, Issue 10–12, pp 1485–1499 | Cite as

High plasma guanidinoacetate-to-homoarginine ratio is associated with high all-cause and cardiovascular mortality rate in adult renal transplant recipients

  • Erik HanffEmail author
  • Mohammad Yusof Said
  • Arslan Arinc Kayacelebi
  • Adrian Post
  • Isidor Minovic
  • Else van den Berg
  • Martin H. de Borst
  • Harry van Goor
  • Stephan J. L. Bakker
  • Dimitrios Tsikas
Original Article


l-Arginine:glycine amidinotransferase (AGAT) is the main producer of the creatine precursor, guanidinoacetate (GAA), and l-homoarginine (hArg). We and others previously reported lower levels of circulating and urinary hArg in renal transplant recipients (RTR) compared to healthy subjects. In adults, hArg emerged as a novel risk factor for renal and cardiovascular adverse outcome. Urinary GAA was found to be lower in children and adolescents with kidney transplants compared to healthy controls. Whether GAA is also a risk factor in the renal and cardiovascular systems of adults, is not yet known. In the present study, we aimed to investigate the significance of circulating GAA and the GAA-to-hArg molar ratio (GAA/hArg) in adult RTR. We hypothesized that GAA/hArg represents a measure of the balanced state of the AGAT activity in the kidneys, and would prospectively allow assessing a potential association between GAA/hArg and long-term outcome in RTR. The median follow-up period was 5.4 years. Confounders and potential mediators of GAA/hArg associations were evaluated with multivariate linear regression analyses, and the association with all-cause and cardiovascular mortality or death-censored graft loss was studied with Cox regression analyses. The study cohort consisted of 686 stable RTR and 140 healthy kidney donors. Median plasma GAA concentration was significantly lower in the RTR compared to the kidney donors before kidney donation: 2.19 [1.77–2.70] µM vs. 2.78 [2.89–3.35] µM (P < 0.001). In cross-sectional multivariable analyses in RTR, HDL cholesterol showed the strongest association with GAA/hArg. In prospective analyses in RTR, GAA/hArg was associated with a higher risk for all-cause mortality (hazard ratio (HR): 1.35 [95% CI 1.19–1.53]) and cardiovascular mortality (HR: 1.46 [95% CI 1.24–1.73]), independent of potential confounders. GAA but not GAA/hArg was associated with death-censored graft loss in crude survival and Cox regression analyses. The association of GAA and death-censored graft loss was lost after adjustment for eGFR. Our study suggests that in the kidneys of RTR, the AGAT-catalyzed biosynthesis of GAA is decreased. That high GAA/hArg is associated with a higher risk for all-cause and cardiovascular mortality may suggest that low plasma hArg is a stronger contributor to these adverse outcomes in RTR than GAA.


Arginine Cardiovascular risk Graft survival Kidney Transplantation 



Asymmetric dimethylarginine


Arginine:glycine amidinotransferase


Body surface area


Body mass index


Confidence interval


Chronic kidney disease


Estimated glomerular filtration rate






Hazard ratio


Interquartile range


Mycophenolate mofetil


Nitric oxide


Nitric oxide synthase


Endothelial nitric oxide synthase


N-Terminal pro-hormone of brain natriuretic peptide


Parathyroid hormone


Quality control


Renal transplant recipients



This work was supported by Grants from the Dutch Kidney Foundation (NSN C08-2254, P13-114), by COST Action BM1005: ENOG: European Network on Gasotransmitters ( and by the Top Institute Food and Nutrition (A-1003). This study was based on the TransplantLines Food and Nutrition Biobank and Cohort Study (TxL-FN), which was funded by the Top Institute Food and Nutrition of the Netherlands (Grant A-1003). The study is registered at under number NCT02811835.

Compliance with ethical standards

Conflict of interest

All authors report no conflict of interest.

Ethical approval

The Institutional Review Board approved the study protocol (METc 2008/186) which was in adherence to the Declaration of Helsinki.

Supplementary material

726_2019_2783_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 42 kb)


  1. Alesutan I, Feger M, Tuffaha R, Castor T, Musculus K, Buehling SS, Heine CL, Kuro OM, Pieske B, Schmidt K, Tomaschitz A, März W, Pilz S, Meinitzer A, Voelkl J, Lang F (2016) Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine. Cardiovasc Res 110(3):408–418. CrossRefPubMedGoogle Scholar
  2. Altmann U, Böger CA, Farkas S, Mack M, Luchner A, Hamer OW, Zeman F, Debl K, Fellner C, Jungbauer C, Banas B, Buchner S (2017) Effects of reduced kidney function because of living kidney donation on left ventricular mass. Hypertension 69(2):297–303. CrossRefPubMedGoogle Scholar
  3. Andrade F, Rodriguez-Soriano J, Prieto JA, Elorz J, Aguirre M, Ariceta G, Martin S, Sanjurjo P, Aldamiz-Echevarria L (2008) The arginine-creatine pathway is disturbed in children and adolescents with renal transplants. Pediatr Res 64(2):218–222. CrossRefPubMedGoogle Scholar
  4. Andrade F, Rodriguez-Soriano J, Prieto JA, Aguirre M, Ariceta G, Lage S, Azcona I, Prado C, Sanjurjo P, Aldamiz-Echevarria L (2011) Methylation cycle, arginine-creatine pathway and asymmetric dimethylarginine in paediatric renal transplant. Nephrol Dial Transpl 26(1):328–336. CrossRefGoogle Scholar
  5. Atzler D, Schonhoff M, Cordts K, Ortland I, Hoppe J, Hummel FC, Gerloff C, Jaehde U, Jagodzinski A, Boger RH, Choe CU, Schwedhelm E (2016) Oral supplementation with L-homoarginine in young volunteers. Br J Clin Pharmacol 82(6):1477–1485. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Atzler D, McAndrew DJ, Cordts K, Schneider JE, Zervou S, Schwedhelm E, Neubauer S, Lygate CA (2017) Dietary supplementation with homoarginine preserves cardiac function in a murine model of post-myocardial infarction heart failure. Circulation 135(4):400–402. CrossRefPubMedGoogle Scholar
  7. Battini R, Leuzzi V, Carducci C, Tosetti M, Bianchi MC, Item CB, Stockler-Ipsiroglu S, Cioni G (2002) Creatine depletion in a new case with AGAT deficiency: clinical and genetic study in a large pedigree. Mol Genet Metab 77(4):326–331CrossRefGoogle Scholar
  8. Böger RH, Bode-Boger SM, Szuba A, Tsao PS, Chan JR, Tangphao O, Blaschke TF, Cooke JP (1998) Asymmetric dimethylarginine (ADMA): a novel risk factor for endothelial dysfunction: its role in hypercholesterolemia. Circulation 98(18):1842–1847CrossRefGoogle Scholar
  9. Bollenbach A, Cordts K, Hanff E, Atzler D, Choe CU, Schwedhelm E, Tsikas D (2019) Evidence by GC-MS that lysine is an arginase-catalyzed metabolite of homoarginine in vitro and in vivo in humans. Anal Biochem 577:59–66CrossRefGoogle Scholar
  10. Choe CU, Atzler D, Wild PS, Carter AM, Böger RH, Ojeda F, Simova O, Stockebrand M, Lackner K, Nabuurs C, Marescau B, Streichert T, Müller C, Lüneburg N, De Deyn PP, Benndorf RA, Baldus S, Gerloff C, Blankenberg S, Heerschap A, Grant PJ, Magnus T, Zeller T, Isbrandt D, Schwedhelm E (2013) Homoarginine levels are regulated by l-arginine:glycine amidinotransferase and affect stroke outcome: results from human and murine studies. Circulation 128(13):1451–1461. CrossRefPubMedGoogle Scholar
  11. Cullen ME, Yuen AH, Felkin LE, Smolenski RT, Hall JL, Grindle S, Miller LW, Birks EJ, Yacoub MH, Barton PJ (2006) Myocardial expression of the arginine:glycine amidinotransferase gene is elevated in heart failure and normalized after recovery: potential implications for local creatine synthesis. Circulation 114(1 Suppl):I16–20. CrossRefPubMedGoogle Scholar
  12. Das AM, Ullrich K, Isbrandt D (2000) Upregulation of respiratory chain enzymes in guanidinoacetate methyltransferase deficiency. J Inherit Metab Dis 23(4):375–377CrossRefGoogle Scholar
  13. Du Bois D, Du Bois EF (1989) A formula to estimate the approximate surface area if height and weight be known. 1916. Nutrition 5 (5):303-311; discussion 312-303Google Scholar
  14. Dumont J, Zureik M, Cottel D, Montaye M, Ducimetiere P, Amouyel P, Brousseau T (2007) Association of arginase 1 gene polymorphisms with the risk of myocardial infarction and common carotid intima media thickness. J Med Genet 44(8):526–531. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Faller KME, Atzler D, McAndrew DJ, Zervou S, Whittington HJ, Simon JN, Aksentijevic D, Ten Hove M, Choe CU, Isbrandt D, Casadei B, Schneider JE, Neubauer S, Lygate CA (2018) Impaired cardiac contractile function in arginine:glycine amidinotransferase knockout mice devoid of creatine is rescued by homoarginine but not creatine. Cardiovasc Res 114(3):417–430. CrossRefPubMedGoogle Scholar
  16. Frenay AR, Kayacelebi AA, Beckmann B, Soedamah-Muhtu SS, de Borst MH, van den Berg E, van Goor H, Bakker SJ, Tsikas D (2015a) High urinary homoarginine excretion is associated with low rates of all-cause mortality and graft failure in renal transplant recipients. Amino Acids 47(9):1827–1836. CrossRefPubMedGoogle Scholar
  17. Frenay AR, van den Berg E, de Borst MH, Beckmann B, Tsikas D, Feelisch M, Navis G, Bakker SJ, van Goor H (2015b) Plasma ADMA associates with all-cause mortality in renal transplant recipients. Amino Acids 47(9):1941–1949. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hanff E, Kayacelebi AA, Herrmann C, Obermann M, Das AM, Tsikas D (2016a) Unaltered l-arginine/NO pathway in a MELAS patient: is mitochondrial NO synthase involved in the MELAS syndrome? Int J Cardiol 223:479–481. CrossRefPubMedGoogle Scholar
  19. Hanff E, Kayacelebi AA, Yanchev GR, Maassen N, Haghikia A, Tsikas D (2016b) Simultaneous stable-isotope dilution GC-MS measurement of homoarginine, guanidinoacetate and their common precursor arginine in plasma and their interrelationships in healthy and diseased humans. Amino Acids 48(3):721–732. CrossRefPubMedGoogle Scholar
  20. Hanff E, Hafner P, Bollenbach A, Bonati U, Kayacelebi AA, Fischer D, Tsikas D (2018) Effects of single and combined metformin and L-citrulline supplementation on l-arginine-related pathways in Becker muscular dystrophy patients: possible biochemical and clinical implications. Amino Acids 50(10):1391–1406. CrossRefPubMedGoogle Scholar
  21. Hanff E, Ruben S, Kreuzer M, Bollenbach A, Kayacelebi AA, Das AM, von Versen-Hoynck F, von Kaisenberg C, Haffner D, Uckert S, Tsikas D (2019) Development and validation of GC-MS methods for the comprehensive analysis of amino acids in plasma and urine and applications to the HELLP syndrome and pediatric kidney transplantation: evidence of altered methylation, transamidination, and arginase activity. Amino Acids. CrossRefPubMedGoogle Scholar
  22. Harrell FE Jr, Lee KL, Mark DB (1996) Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 15(4):361–387.;2-4 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Hecker M, Walsh DT, Vane JR (1991) On the substrate specificity of nitric oxide synthase. FEBS Lett 294(3):221–224CrossRefGoogle Scholar
  24. Issa N, Vaughan LE, Denic A, Kremers WK, Chakkera HA, Park WD, Matas AJ, Taler SJ, Stegall MD, Augustine JJ, Rule AD (2019) Larger nephron size, low nephron number, and nephrosclerosis on biopsy as predictors of kidney function after donating a kidney. Am J Transpl. CrossRefGoogle Scholar
  25. Item CB, Stockler-Ipsiroglu S, Stromberger C, Muhl A, Alessandri MG, Bianchi MC, Tosetti M, Fornai F, Cioni G (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69(5):1127–1133. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kayacelebi AA, Beckmann B, Gutzki FM, Jordan J, Tsikas D (2014) GC-MS and GC-MS/MS measurement of the cardiovascular risk factor homoarginine in biological samples. Amino Acids 46(9):2205–2217. CrossRefPubMedGoogle Scholar
  27. Kayacelebi AA, Minović I, Hanff E, Frenay AS, de Borst MH, Feelisch M, van Goor H, Bakker SJL, Tsikas D (2017) Low plasma homoarginine concentration is associated with high rates of all-cause mortality in renal transplant recipients. Amino Acids 49(7):1193–1202. CrossRefPubMedGoogle Scholar
  28. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J, Ckd EPI (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604–612CrossRefGoogle Scholar
  29. Maas R, Mieth M, Titze SI, Hübner S, Fromm MF, Kielstein JT, Schmid M, Köttgen A, Kronenberg F, Krane V, Hausknecht B, Eckardt KU, Schneider MP, investigators Gs (2018) Drugs linked to plasma homoarginine in chronic kidney disease patients-a cross-sectional analysis of the German Chronic Kidney Disease cohort. Nephrol Dial Transplant. CrossRefPubMedGoogle Scholar
  30. Martens-Lobenhoffer J, Emrich IE, Zawada AM, Fliser D, Wagenpfeil S, Heine GH, Bode-Böger SM (2018) L-Homoarginine and its AGXT2-metabolite GOCA in chronic kidney disease as markers for clinical status and prognosis. Amino Acids 50(10):1347–1356. CrossRefPubMedGoogle Scholar
  31. Moali C, Boucher JL, Sari MA, Stuehr DJ, Mansuy D (1998) Substrate specificity of NO synthases: detailed comparison of l-arginine, homo-l-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine. Biochemistry 37(29):10453–10460. CrossRefPubMedGoogle Scholar
  32. Morales JM, Dominguez-Gil B (2006) Impact of tacrolimus and mycophenolate mofetil combination on cardiovascular risk profile after kidney transplantation. J Am Soc Nephrol 17(12 Suppl 3):S296–303. CrossRefPubMedGoogle Scholar
  33. Oterdoom LH, de Vries AP, van Ree RM, Gansevoort RT, van Son WJ, van der Heide JJ, Navis G, de Jong PE, Gans RO, Bakker SJ (2009) N-terminal pro-B-type natriuretic peptide and mortality in renal transplant recipients versus the general population. Transplantation 87(10):1562–1570. CrossRefPubMedGoogle Scholar
  34. Pilz S, Meinitzer A, Tomaschitz A, Drechsler C, Ritz E, Krane V, Wanner C, Boehm BO, März W (2011a) Low homoarginine concentration is a novel risk factor for heart disease. Heart 97(15):1222–1227. CrossRefPubMedGoogle Scholar
  35. Pilz S, Tomaschitz A, Meinitzer A, Drechsler C, Ritz E, Krane V, Wanner C, Böhm BO, März W (2011b) Low serum homoarginine is a novel risk factor for fatal strokes in patients undergoing coronary angiography. Stroke 42(4):1132–1134. CrossRefPubMedGoogle Scholar
  36. Post A, Tsikas D, Bakker SJL (2019) Creatine is a conditionally essential nutrient in chronic kidney disease: a hypothesis and narrative literature review. Nutrients. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Rodionov RN, Oppici E, Martens-Lobenhoffer J, Jarzebska N, Brilloff S, Burdin D, Demyanov A, Kolouschek A, Leiper J, Maas R, Cellini B, Weiss N, Bode-Böger SM (2016) A Novel Pathway for Metabolism of the Cardiovascular Risk Factor Homoarginine by alanine:glyoxylate aminotransferase 2. Sci Rep 6:35277. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ryan WL, Barak AJ, Johnson RJ (1968) Lysine, homocitrulline, and homoarginine metabolism by the isolated perfused rat liver. Arch Biochem Biophys 123(2):294–297CrossRefGoogle Scholar
  39. Sasaki M, Takahara K, Natelson S (1973) Urinary guanidinoacetate-guanidinosuccinate ratio: an indicator of kidney dysfunction. Clin Chem 19(3):315–321PubMedGoogle Scholar
  40. Schelling JR (2016) Tubular atrophy in the pathogenesis of chronic kidney disease progression. Pediatr Nephrol 31(5):693–706. CrossRefPubMedGoogle Scholar
  41. Stockler S, Isbrandt D, Hanefeld F, Schmidt B, von Figura K (1996) Guanidinoacetate methyltransferase deficiency: the first inborn error of creatine metabolism in man. Am J Hum Genet 58(5):914–922PubMedPubMedCentralGoogle Scholar
  42. Tsikas D, Bollenbach A, Hanff E, Kayacelebi AA (2018) Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and homoarginine (hArg): the ADMA, SDMA and hArg paradoxes. Cardiovasc Diabetol 17(1):1. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ueda S, Yamagishi S, Kaida Y, Okuda S (2007) Asymmetric dimethylarginine may be a missing link between cardiovascular disease and chronic kidney disease. Nephrology (Carlton) 12(6):582–590. CrossRefGoogle Scholar
  44. Valtonen P, Laitinen T, Lyyra-Laitinen T, Raitakari OT, Juonala M, Viikari JS, Heiskanen N, Vanninen E, Punnonen K, Heinonen S (2008) Serum L-homoarginine concentration is elevated during normal pregnancy and is related to flow-mediated vasodilatation. Circ J 72(11):1879–1884CrossRefGoogle Scholar
  45. van den Berg E, Engberink MF, Brink EJ, van Baak MA, Joosten MM, Gans RO, Navis G, Bakker SJ (2012a) Dietary acid load and metabolic acidosis in renal transplant recipients. Clin J Am Soc Nephrol 7(11):1811–1818. CrossRefPubMedPubMedCentralGoogle Scholar
  46. van den Berg E, Geleijnse JM, Brink EJ, van Baak MA, Homan van der Heide JJ, Gans RO, Navis G, Bakker SJ (2012b) Sodium intake and blood pressure in renal transplant recipients. Nephrol Dial Transpl 27(8):3352–3359. CrossRefGoogle Scholar
  47. van den Berg E, Engberink MF, Brink EJ, van Baak MA, Gans RO, Navis G, Bakker SJ (2013) Dietary protein, blood pressure and renal function in renal transplant recipients. Br J Nutr 109(8):1463–1470. CrossRefPubMedGoogle Scholar
  48. van Leuven SI, Kastelein JJ, Allison AC, Hayden MR, Stroes ES (2006) Mycophenolate mofetil (MMF): firing at the atherosclerotic plaque from different angles? Cardiovasc Res 69(2):341–347. CrossRefPubMedGoogle Scholar
  49. Wyss M, Wallimann T (1994) Creatine metabolism and the consequences of creatine depletion in muscle. Mol Cell Biochem 133:51–66. CrossRefPubMedGoogle Scholar
  50. Yokoi I, Kabuto H, Habu H, Mori A (1994) Alpha-Guanidinoglutaric acid, an endogenous convulsant, as a novel nitric oxide synthase inhibitor. J Neurochem 63(4):1565–1567CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Erik Hanff
    • 1
    Email author
  • Mohammad Yusof Said
    • 2
  • Arslan Arinc Kayacelebi
    • 1
  • Adrian Post
    • 2
  • Isidor Minovic
    • 2
  • Else van den Berg
    • 3
  • Martin H. de Borst
    • 2
  • Harry van Goor
    • 4
  • Stephan J. L. Bakker
    • 2
  • Dimitrios Tsikas
    • 1
  1. 1.Core Unit Proteomics, Institute of ToxicologyHannover Medical SchoolHannoverGermany
  2. 2.Division of Nephrology, Department of Internal MedicineUniversity Medical Center Groningen and University of GroningenGroningenThe Netherlands
  3. 3.Division of Acute Medicine, Department of Internal MedicineUniversity Medical Center Groningen and University of GroningenGroningenThe Netherlands
  4. 4.Department of Pathology and Medical BiologyUniversity Medical Center Groningen and University of GroningenGroningenThe Netherlands

Personalised recommendations