Advertisement

Amino Acids

pp 1–24 | Cite as

Central regulation of feeding behavior through neuropeptides and amino acids in neonatal chicks

  • Phuong V. Tran
  • Vishwajit S. Chowdhury
  • Mitsuhiro FuruseEmail author
Invited Review

Abstract

Animals at the neonatal stage have to eat more to support better growth and health. However, it is difficult to understand the mechanism of feeding during an early stage of life in the brain of the rodent model. Chickens are precocial and they can look for their food by themselves right after hatching. Neonatal chicks have a relatively large-sized brain; therefore, the drugs are easy to administer centrally and changes in food intake can be clearly monitored. Sleeping status, which affects food intake, can be estimated from the posture. The closest vertebrate outgroup to mammals is birds, but it was reported that the organization of the human genome is closer to that of the chicken than the mouse. Thus, it is important to understand the central mechanism of feeding regulation in the neonatal chicks. In neuropeptides, the number of candidates as the orexigenic factor was less than those as the anorexigenic factor, even at an early growth stage. Some of the neuropeptides have reverse effects, e.g., ghrelin and prolactin releasing peptides, or no effects compared to the effects confirmed in mammals. Some of the genetic differences between meat-type (broiler) and layer-type chickens would explain the difference in food intake. On the other hand, it was difficult to explain the feeding mechanism by neuropeptides alone, as neonatal chicks have a repeated feeding, sleeping, and resting behavior within a short period. Some of the amino acids and their metabolites act centrally to regulate feeding with sedative and hypnotic effects. In conclusion, endogenous neuropeptides and endogenous and/or exogenous nutrients like amino acids collaborate to regulate feeding behavior in neonatal chicks.

Keywords

Neonatal chicks Neuropeptides Amino acids Food intake Sleep 

Abbreviations

ACTH

Adrenocorticotropic hormone

AgRP

Agouti-related protein

β-Ala

β-Alanine

ARC

Arcuate nucleus

l-Arg

l-Arginine

l-Asn

l-Asparagine

d-Asp

d-Aspartic acid

l-Asp

l-Aspartic acid

AVT

Arginine–vasotocin

CART

Cocaine- and amphetamine-regulated transcript

CCK

Cholecystokinin

CCK-8S

CCK-8 sulfate

CGRP

Calcitonin gene-related peptide

CLON

Clonidine

CRF

Corticotrophin-releasing factor

CT

Calcitonin

DMN

Dorsomedial nucleus

DVs

Distress vocalizations

β-END

β-Endorphin

GABA

γ-Aminobutyric acid

GLP-1

Glucagon-like peptide-1

l-Glu

l-Glutamic acid

GnIH

Gonadotropin-inhibitory hormone

GRF

Growth hormone releasing factor

l-His

l-Histidine

HPA

Hypothalamic-pituitary-adrenocortical

ICV

Intracerebroventricular

IP

Intraperitoneal

KYNA

Kynurenic acid

l-Leu

l-leucine

LHA

Lateral hypothalamic area

LPLRFamide

Leu-Pro-Leu-Arg-Phe-NH2

l-Lys

l-Lysine

MCR

Melanocortin receptors

α-MSH

α-Melanocortin-stimulating hormone

NA

Noradrenaline

NAergic

Noradrenergic

NMB

Neuromedian B

NMC

Neuromedian C

NMDA

N-Methyl-d-aspartic acid

NO

Nitric oxide

NOS

NO synthase

NPK

Neuropeptide K

NPS

Neuropeptide S

NPAF

Neuropeptide AF

NPFF

Neuropeptide FF

NPSF

Neuropeptide SF

NPVF

Neuropeptide VF

NPY

Neuropeptide Y

l-Orn

l-Ornithine

OXM

Oxyntomodulin

l-PA

l-Pipecolic acid

d-PA

d-Pipecolic acid

PACAP

Pituitary adenylate cyclase-activating polypeptide

PHN

Periventricular nucleus

POMC

Pro-opiomelanocortin

d-Pro

d-Proline

l-Pro

l-Proline

PrRP

Prolactin-releasing peptide

PVN

Paraventricular nucleus

QRFP

Pyroglutamylated RFamide peptide

l-Ser

l-Serine

l-Trp

l-Tryptophan

VIP

Vasoactive intestinal peptide

VMH

Ventromedial hypothalamus

Notes

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP17H01503. We would like to thank Editage (www.editage.jp) for English language editing.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article reviews published studies and does not require either the approval of animal use or human consent.

Informed consent

Hence no informed consent was required for any part of this review.

References

  1. Abbasnejad M, Jonaidi H, Denbow DM, Pour Rahimi AM (2005) Feeding and locomotion responses to centrally injected nociceptin/orphanin FQ in chicks. Physiol Behav 85:383–386CrossRefPubMedGoogle Scholar
  2. Achapu M, Pompei P, Polidori C, de Caro G, Massi M (1992) Central effects of neuropeptide K on water and food intake in the rat. Brain Res Bull 28:299–303CrossRefPubMedGoogle Scholar
  3. Agnati LF, Fuxe K, Benfenati F, Battistini N, Härfstrand A, Tatemoto K, Hökfelt T, Mutt V (1983) Neuropeptide Y in vitro increases the number of alpha 2-adrenergic binding sites in membranes of the medulla oblongata of the rat. Acta Physiol Scand 118:293–295CrossRefPubMedGoogle Scholar
  4. Al-Barazanji KA, Miller JE, Rice SQ, Arch JR, Chambers JK (2001) C-terminal fragments of ACTH stimulate feeding in fasted rats. Horm Metab Res 33:480–485CrossRefPubMedGoogle Scholar
  5. Alexiou C, Zimmermann JP, Schick RR, Schusdziarra V (1998) Xenin—a novel suppressor of food intake in rats. Brain Res 800:294–299CrossRefPubMedGoogle Scholar
  6. Ando R, Bungo T, Kawakami S-I, Shimojo M, Masuda Y, Furuse M (2000) Intracerebroventricular injection of mammalian motilin, melanin-concentrating hormone or galanin does not stimulate food intake in neonatal chicks. Br Poult Sci 41:508–511CrossRefPubMedGoogle Scholar
  7. Ando R, Kawakami S-I, Bungo T, Ohgushi A, Takagi T, Denbow DM, Furuse M (2001) Feeding responses for several neuropeptide Y receptor agonists in the neonatal chick. Eur J Pharmacol 427:53–59CrossRefPubMedGoogle Scholar
  8. Aponte G, Leung P, Gross D, Yamada T (1984) Effects of somatostatin on food intake in rats. Life Sci 35:741–746CrossRefPubMedGoogle Scholar
  9. Asechi M, Tomonaga S, Tachibana T, Han L, Hayamizu K, Denbow DM, Furuse M (2006) Intracerebroventricular injection of l-serine analogs and derivatives induces sedative and hypnotic effects under an acute stressful condition in neonatal chicks. Behav Brain Res 170:71–77CrossRefPubMedGoogle Scholar
  10. Barton C, York DA, Bray GA (1996) Opioid receptor subtype control of galanin-induced feeding. Peptides 17:237–240CrossRefPubMedGoogle Scholar
  11. Beck B, Fernette B, Stricker-Krongrad A (2005) Peptide S is a novel potent inhibitor of voluntary a–d fast-induced food intake in rats. Biochem Biophys Res Commun 332:859–865CrossRefPubMedGoogle Scholar
  12. Benoit SC, Thiele TE, Heinrichs SC, Rushing PA, Blake KA, Steeley RJ (2000) Comparison of central administration of corticotropin-releasing hormone and urocortin on food intake, conditioned taste aversion, and c-Fos expression. Peptides 21:345–351CrossRefPubMedGoogle Scholar
  13. Bigot K, Mignon-Grasteau S, Picard M, Tesseraud S (2003) Effects of delayed feed intake on body, intestine, and muscle development in neonate broilers. Poult Sci 82:781–788CrossRefPubMedGoogle Scholar
  14. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immnunoreactive pituitary growth hormone. Science 179:77–79CrossRefPubMedGoogle Scholar
  15. Britton DR, Hoffman DK, Lederis K, Rivier J (1984) A comparison of the behavioral effects of CRF, Sauvagine and Urotensin I. Brain Res 304:201–205CrossRefPubMedGoogle Scholar
  16. Brownstein M, Arimura A, Sato H, Schally AV, Kizer JS (1975) The regional distribution of somatostatin in the rat brain. Endocrinology 96:1456–1461CrossRefPubMedGoogle Scholar
  17. Brusatte SL, O’Connor JK, Jarvis ED (2015) The origin and diversification of birds. Curr Biol 25:R888–R898CrossRefPubMedGoogle Scholar
  18. Bungo T, Furuse M (2001) Glucagon-like peptide-1 (7–36) amide (GLP-1) is a potent satiety agent in chickens. In: Dawson A, Chaturvedi CM (eds) Avian endocrinology. Narosa Publishing House, New Delhi, pp 337–348Google Scholar
  19. Bungo T, Kawakami SI, Ohgushi A, Shimojo M, Masuda Y, Saito N, Sugahara K, Hasegawa S, Furuse M (1999a) Intracerebroventricular administration of glucagon-like peptide-1 induces sleep-like behavior in the neonatal chick. Jpn Poult Sci 36:377–381CrossRefGoogle Scholar
  20. Bungo T, Shimojo M, Masuda Y, Choi YH, Denbow DM, Furuse M (1999b) Induction of food intake by a noradrenergic system using clonidine and fusaric acid in the neonatal chick. Brain Res 826:313–316CrossRefPubMedGoogle Scholar
  21. Bungo T, Shimojo M, Masuda Y, Saito N, Sugahara K, Hasegawa S, Furuse M (1999c) Effects of food intake in the neonatal chick of substitution of N-terminal amino acid of glucagon-like peptide-1 (7–36). Life Sci 64:PL295–PL299Google Scholar
  22. Bungo T, Shimojo M, Masuda Y, Tachibana T, Tanaka S, Sugahara K, Furuse M (1999d) Intracerebroventricular administration of mouse leptin does not reduce food intake in the chicken. Brain Res 817:196–198CrossRefPubMedGoogle Scholar
  23. Bungo T, Ando R, Kawakami S-I, Ohgushi A, Shimojo M, Masuda Y, Furuse M (2000a) Central bombesin inhibits food intake and the orexigenic effect of neuropeptide Y in the neonatal chick. Physiol Behav 70:573–576CrossRefPubMedGoogle Scholar
  24. Bungo T, Choi YH, Denbow DM, Shimojo M, Masuda Y, Furuse M (2000b) Intracerebroventricularly administered neuropeptide Y and clonidine: effects on feeding behavior in the neonatal chick. Jpn Poult Sci 37:27–32CrossRefGoogle Scholar
  25. Bungo T, Kawakami SI, Ohgushi A, Sashihara K, Saito N, Sugahara K, Hasegawa S, Denbow DM, Furuse M (2001) Intracerebroventricular injection of fusaric acid attenuates the anorexia by glucagon-like peptide-1 in the neonatal chick. Pharmacol Biochem Behav 70:251–255CrossRefPubMedGoogle Scholar
  26. Bungo T, Kawamura K, Izumi T, Dodo K-I, Ueda H (2004) Feeding responses to μ-, δ- and κ-opioid receptor agonists in the meat-type chick. Pharmacol Biochem Behav 78:707–710CrossRefPubMedGoogle Scholar
  27. Bungo T, Dodo K-I, Kawamura K, Izumi T, Ueda H (2005) Effects of various μ- and δ-opioid ligands on food intake in the meat-type chick. Physiol Behav 85:519–523CrossRefPubMedGoogle Scholar
  28. Bungo T, Shiraishi JI, Yanagita K, Ohta Y, Fujita M (2009) Effect of nociceptin/orphanin FQ on feeding behavior and hypothalamic neuropeptide expression in layer-type chicks. Gen Comp Endocrinol 163:47–51CrossRefPubMedGoogle Scholar
  29. Burt DW, Bruley C, Dunn IC, Jones CT, Ramage A, Law AS, Morrice DR, Paton IR, Smith J, Windsor D, Sazanov A, Fries R, Waddington D (1999) The dynamics of chromosome evolution in birds and mammals. Nature 402:411–413CrossRefPubMedGoogle Scholar
  30. Campbell BJ, Dimaline R, Dockray GJ, Hughes G (1991) Inhibition of food intake by omeprazole in the chicken. Eur J Pharmacol 209:231–235CrossRefPubMedGoogle Scholar
  31. Chang YF (1978) Lysine metabolism in the rat brain: blood–brain-barrier transport, Formation of pipecolic acid and human hyperpipecolatemia. J Neurochem 30:355–360CrossRefPubMedGoogle Scholar
  32. Chang YF (1982) Lysine metabolism in the human and the monkey: demonstration of pipecolic acid formation in the brain and other organs. Neurochem Res 7:577–588CrossRefPubMedGoogle Scholar
  33. Cline MA, Furuse M (2012) Neuropeptide regulation of food intake in chicks. In: Morrison JL (ed) Food intake: regulation, assessing and controlling. NOVA Science Publishers Inc., Hauppauge, pp 1–34Google Scholar
  34. Cline MA, Mathews D (2008) Anoretic effects of neuropeptide FF are mediated via central mu and kappa subtypes of opioid receptors and receptor ligands. Gen Comp Endocrinol 159:125–129CrossRefPubMedGoogle Scholar
  35. Cline MA, Sliwa L (2009) Neuropeptide VF-associated satiety involves mu and kappa but not delta subtypes of opioid receptors in chicks. Neurosci Lett 455:195–198CrossRefPubMedGoogle Scholar
  36. Cline MA, Smith ML (2007) Central alpha-melanocyte stimulating hormone attenuates behavioral effects of neuropeptide Y in chicks. Physiol Behav 91:588–592CrossRefPubMedGoogle Scholar
  37. Cline MA, Nandar W, Rogers JO (2007a) Central neuropeptide FF reduces feed consumption and affects hypothalamic chemistry in chicks. Neuropeptides 41:433–439CrossRefPubMedGoogle Scholar
  38. Cline MA, Nandar W, Rogers JO (2007b) Xenin reduces feed intake by activating the s hypothalamus and influences gastrointestinal transit rate in chicks. Behav Brain Res 179:28–32CrossRefPubMedGoogle Scholar
  39. Cline MA, Godlove DC, Nandar W, Bowden CN, Prall BC (2007c) Anorexigenic effects of central neuropeptide S involve the hypothalamus in chicks (Gallus gallus). Comp Biochem Physiol Part A, Mol Integr Physiol 148:657–663CrossRefGoogle Scholar
  40. Cline MA, Fouse D, Prall BC (2008a) Central and peripheral alytesin cause short-term anorexigenic effects in neonatal chicks. Neuropeptides 42:283–291CrossRefPubMedGoogle Scholar
  41. Cline MA, Bowden CN, Calchary WA, Layne JE (2008b) Short-term anorexigenic effects of central neuropeptide VF are associated with hypothalamic changes in chicks. J Neuroendocrinol 20:971–977CrossRefPubMedGoogle Scholar
  42. Cline MA, Bowden CN, Nandar W, Rogers JO (2008c) Central oxyntomodulin causes anorexigenic effects associated with the hypothalamus and alimentary canal in chicks (Gallus gallus). Comp Biochem Physiol A: Mol Integr Physiol 149:405–410CrossRefGoogle Scholar
  43. Cline MA, Nandar W, Prall B, Bowden C, Denbow DM (2008d) Central visfatin causes orexigenic effects in chicks. Behav Brain Res 186:293–297CrossRefPubMedGoogle Scholar
  44. Cline MA, Nandar W, Smith ML, Pittman BH, Kelly M, Rogers JO (2008e) Amylin causes anorexigenic effects via the hypothalamus and brain stem in chicks. Regul Pept 146:140–146CrossRefPubMedGoogle Scholar
  45. Cline MA, Calchary W, Nandar W (2009a) Effect of calcitonin gene-related peptide (CGRP) on avian appetite-related processes. Behav Brain Res 196:242–247CrossRefPubMedGoogle Scholar
  46. Cline MA, Newymer B, Smith ML (2009b) The anorectic effect of neuropeptide AF is associated with satiety-related hypothalamic nuclei. J Neuroendocrinol 21:595–601CrossRefPubMedGoogle Scholar
  47. Cline MA, Prall B, Rogers JO, Tachibana T (2009c) Satiety induced by central stresscopin is mediated by corticotrophin-releasing factor receptors and hypothalamic changes in chicks. Pharmacol Biochem Behav 92:663–669CrossRefPubMedGoogle Scholar
  48. Cline MA, Layne JE, Calchary WA, Sheehy RS, Tachibana T, Furuse M (2009d) LPLRFamide causes anorexigenic effects in broiler chicks and bobwhite quail. Gen Comp Endocrinol 165:315–320CrossRefPubMedGoogle Scholar
  49. Cline MA, Cofield SA, Tachibana T (2010) Central litorin injection is associated with primary anorexigenic effects that coincide with activation of the magnocellular division of the paraventricular nucleus. Neuropeptides 44:247–252CrossRefPubMedGoogle Scholar
  50. Dancis J, Hutzler J (1981) The metabolism of d- and l-pipecolic acid in the rabbit and rat. Biochim Biophys Acta 675:411–415CrossRefPubMedGoogle Scholar
  51. Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A (1979) Autoradiographic distribution of l-proline in chicks after intracerebral injection. Physiol Behav 22:693–695CrossRefPubMedGoogle Scholar
  52. de Pedro N, Céspedes MV, Delgado MJ, Alonso-Bedate M (1995) The galanin-induced feeding stimulation is mediated via alpha 2-adrenergic receptors in goldfish. Regul Pept 57:77–84CrossRefPubMedGoogle Scholar
  53. Denbow DM, Cherry JA, Siegel PB, Van Krey HP (1981) Eating, drinking and temperature response of chicks to brain catecholamine injection. Physiol Behav 27:265–269CrossRefPubMedGoogle Scholar
  54. Denbow DM, Meade S, Robertson A, McMurty JP, Richards M, Ashwell C (2000) Leptin-induced decrease in food intake in chickens. Physiol Behav 69:359–362CrossRefPubMedGoogle Scholar
  55. Dib B (1999) Food and water intake suppression by intracerebroventricular administration of substance P in food- and water-deprived rats. Brain Res 830:38–42CrossRefPubMedGoogle Scholar
  56. Dimaline R, Lee CM (1990) Chicken gastrin: a member of the gastrin/CCK family with novel structure-activity relationships. Am J Physiol 259:G882–G888PubMedGoogle Scholar
  57. Dockray GJ, Reeve JR Jr, Shively J, Gayton RJ, Barnard CS (1983) A novel active pentapeptide from chicken brain identified by antibodies to FMRFamide. Nature 305:328–330CrossRefPubMedGoogle Scholar
  58. Dodo K-I, Izumi T, Ueda H, Bungo T (2005) Response of neuropeptide Y-induced feeding to μ-, δ- and κ-opioid receptor antagonists in the neonatal chick. Neurosci Lett 373:85–88CrossRefPubMedGoogle Scholar
  59. Ellacott KL, Lawrence CB, Rothwell NJ, Luckman SM (2002) PRL-releasing peptide interacts with leptin to reduce food intake and body weight. Endocrinology 143:368–374CrossRefPubMedGoogle Scholar
  60. Erwan E, Tomonaga S, Yoshida J, Nagasawa M, Ogino Y, Denbow DM, Furuse M (2012) Central administration of l- and d-aspartate attenuates stress behaviors by social isolation and CRF in neonatal chicks. Amino Acids 43:1969–1976CrossRefPubMedGoogle Scholar
  61. Erwan E, Chowdhury VS, Nagasawa M, Goda R, Otsuka T, Yasuo S, Furuse M (2014) Central injection of l- and d-aspartate attenuates isolation induced stress behavior in chicks possibly through different mechanisms. Eur J Pharmacol 736:138–142CrossRefPubMedGoogle Scholar
  62. Fastovsky DE, Weishampel DB (2005) The evolution and extinction of the dinosaurs, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  63. Feurle GE, Heger M, Niebergall-Roth E, Teyssen S, Fried M, Eberle C (1997) Gastroenteropancreatic effects of xenin in the dog. J Pept Res 49:324–330CrossRefPubMedGoogle Scholar
  64. Feurle GE, Metzger JW, Grudinski A, Hamscher G (2002) Erratum to Interaction of xenin with the neurotensin receptor of guinea pig enteral smooth muscles. Peptides 23:1519–1525CrossRefPubMedGoogle Scholar
  65. Filippatos TD, Derdemezis CS, Kiortsis DN, Tselepis AD, Elisaf MS (2007) Increased plasma levels of visfatin/pre-B cell colony-enhancing factor in obese and overweight patients with metabolic syndrome. J Endocrinol Invest 30:323–326CrossRefPubMedGoogle Scholar
  66. Fujita T, Amuro Y, Hada T, Higashino K (1999a) Plasma levels of pipecolic acid, both l- and d-enantiomers, in patients with chronic liver diseases, especially hepatic encephalopathy. Clin Chim Acta 287:99–109CrossRefPubMedGoogle Scholar
  67. Fujita T, Hada T, Higashino K (1999b) Origin of d- and l-pipecolic acid in human physiological fluids: a study of the catabolic mechanism to pipecolic acid using the lysine loading test. Clin Chim Acta 287:145–156CrossRefPubMedGoogle Scholar
  68. Furuse M (2002) Central regulation of food intake in the neonatal chick. Anim Sci J 73:83–94CrossRefGoogle Scholar
  69. Furuse M (2007) Behavioral regulators in the brain of neonatal chicks. Anim Sci J 78:218–232CrossRefGoogle Scholar
  70. Furuse M (2015a) Screening of central functions of amino acids and their metabolites for sedative and hypnotic effects using chick model. Eur J Pharmacol 762:382–393CrossRefPubMedGoogle Scholar
  71. Furuse M (2015b) The function of carnosine and its homologues on behavior. In: Preedy VR (eds) Imidazole dipeptides: chemistry, analysis, function and effects (food and nutritional components in focus). Royal Society of Chemistry, pp 471–492Google Scholar
  72. Furuse M, Matsumoto M, Saito N, Sugahara K, Hasegawa S (1997a) The central corticotropin-releasing factor and glucagon-like peptide-1 in food intake of the neonatal chick. Eur J Pharmacol 339:211–213CrossRefPubMedGoogle Scholar
  73. Furuse M, Matsumoto M, Mori R, Sugahara K, Kano K, Hasegawa S (1997b) Influence of fasting and neuropeptide Y on the suppressive food intake induced by intracerebroventricular injection of glucagon-like peptide-1 in the neonatal chick. Brain Res 764:289–292CrossRefPubMedGoogle Scholar
  74. Furuse M, Matsumoto M, Okumura J, Sugahara K, Hasegawa S (1997c) Intracerebroventricular injection of mammalian and chicken glucagon-like peptide-1 inhibits food intake of neonatal chick. Brain Res 755:167–169CrossRefPubMedGoogle Scholar
  75. Furuse M, Bungo T, Shimojo M, Masuda Y, Saito N, Hasegawa S, Sugahara K (1998) Effects of various N-terminal fragments of glucagon-like peptide-1 (7–36) on food intake in the neonatal chick. Brain Res 807:214–217CrossRefPubMedGoogle Scholar
  76. Furuse M, Ando R, Bungo T, Ao R, Shimojo M, Masuda Y (1999a) Intracerebroventricular injection of orexins does not stimulate food intake in neonatal chicks. Br Poult Sci 40:698–700CrossRefPubMedGoogle Scholar
  77. Furuse M, Ao R, Bungo T, Ando R, Shimojo M, Masuda Y, Saito N (1999b) Central gastrin inhibits feeding behavior and food passage in neonatal chicks. Life Sci 65:305–311CrossRefPubMedGoogle Scholar
  78. Furuse M, Bungo T, Ao R, Ando R, Shimojo M, Masuda Y, Denbow DM (2000) Involvement of central gastrin and cholecystokinin in the regulation of food intake in the neonatal chick. J Appl Anim Res 18:129–136CrossRefGoogle Scholar
  79. Furuse M, Tachibana T, Ohgushi A, Ando R, Yoshimatsu T, Denbow DM (2001) Intracerebroventricular injection of ghrelin and growth hormone releasing factor inhibits food intake in neonatal chicks. Neurosci Lett 301:123–126CrossRefPubMedGoogle Scholar
  80. Furuse M, Yamane H, Tomonaga S, Tsuneyoshi Y, Denbow DM (2007) Neuropeptidergic regulation of food intake in the neonatal chick: a review. J Poult Sci 44:349–356CrossRefGoogle Scholar
  81. Gastón MS, Schiöth HB, De Barioglio SR, Salvatierra NA (2015) Gabaergic control of anxiety-like behavior, but not food intake, induced by ghrelin in the intermediate medial mesopallium of the neonatal chick. Horm Behav 67:66–72CrossRefPubMedGoogle Scholar
  82. Giacobini E, Nomura Y, Schmidt-Glenewinkel T (1980) Pipecolic acid: origin, biosynthesis and metabolism in the brain. Cell Mol Biol 26:135–146Google Scholar
  83. Gibbs J, Young RC, Smith GP (1973) Cholecystokinin decreases food intake in rats. J Comp Physiol Psychol 84:488–495CrossRefPubMedGoogle Scholar
  84. Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, Göke B (1993) Exendin-4 is a high potency agonist and truncated exendin-(9–39)-amide an antagonist at the glucagon-like peptide 1-(7–36)-amide receptor of insulin-secreting beta-cells. J Biol Chem 268:19650–19655PubMedGoogle Scholar
  85. Gottesmann C (2002) GABA mechanisms and sleep. Neuroscience 111:231–239CrossRefPubMedGoogle Scholar
  86. Greenberg MJ, Price DA (1983) Invertebrate neuropeptides: native and naturalized. Annu Rev Physiol 45:271–288CrossRefPubMedGoogle Scholar
  87. Hamasu K, Haraguchi T, Kabuki Y, Adachi N, Tomonaga S, Sato H, Denbow DM, Furuse M (2009a) l-Proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids 37:377–382CrossRefPubMedGoogle Scholar
  88. Hamasu K, Shigemi K, Kabuki Y, Tomonaga S, Denbow DM, Furuse M (2009b) Central l-proline attenuates stress-induced dopamine and serotonin metabolism in the chick forebrain. Neurosci Lett 460:78–81CrossRefPubMedGoogle Scholar
  89. Hamasu K, Shigemi K, Tsuneyoshi Y, Yamane H, Sato H, Denbow DM, Furuse M (2010) Intracerebroventricular injection of l-proline and d-Proline induces sedative and hypnotic effects by different mechanisms under an acute stressful condition in chicks. Amino Acids 38:57–64CrossRefPubMedGoogle Scholar
  90. Han Y, Baker DH (1993) Effects of excess methionine or lysine for broilers fed a corn-soybean meal diet. Poult Sci 72:1070–1074CrossRefPubMedGoogle Scholar
  91. Hanada T, Date Y, Shimbara T, Sakihara S, Murakami N, Hayashi Y, Kanai Y, Suda T, Kangawa K, Nakazato M (2003) Central actions of neuromedin U via corticotropin-releasing hormone. Bichem Biophys Res Commun 311:954–958CrossRefGoogle Scholar
  92. Haraguchi T, Tomonaga S, Kurauchi I, Hamasu K, Sato H, Denbow DM, Furuse M (2007) Intracerebroventricular injection of l-proline modifies food intake in neonatal chicks. J Anim Vet Adv 6:1255–1257Google Scholar
  93. Harrold JA, Williams G (2006) Melanocortin-4 receptors, β-MSH and leptin: key elements in the satiety pathway. Peptides 27:365–371CrossRefPubMedGoogle Scholar
  94. Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, Kitada C, Masuo Y, Asano T, Matsumoto H, Sekiguchi M, Kurokawa T, Nishimura O, Onda H, Fujino M (1998) A prolactin-releasing peptide in the brain. Nature 393:272–276CrossRefPubMedPubMedCentralGoogle Scholar
  95. Honda K, Kamisoyama H, Saito N, Kurose Y, Sugahara K, Hasegawa S (2007a) Central administration of glucagon suppresses food intake in chicks. Neurosci Lett 416:198–201CrossRefPubMedGoogle Scholar
  96. Honda K, Kamisoyama H, Saneyasu T, Sugahara K, Hasegawa S (2007b) Central administration of insulin suppresses food intake in chicks. Neurosci Lett 423:153–157CrossRefPubMedGoogle Scholar
  97. Horev G, Aharoni T, Eshdat Y, Friedman-Einat M (2000) Molecular cloning and properties of the chicken leptinreceptor (CLEPR) gene. Mol Cell Endocrinol 162:95–106CrossRefPubMedGoogle Scholar
  98. Hutzler J, Dancis J (1968) Conversion of lysine to saccharopine by human tissues. Biochim Biophys Acta 158:62–69CrossRefPubMedGoogle Scholar
  99. Ida T, Mori K, Miyazato M, Egi Y, Abe S, Nakahara K, Nishihara M, Kangawa K, Murakami N (2005) Neuormedin S is a novel anorexigenic hormone. Endocrinology 146:4217–4223CrossRefPubMedGoogle Scholar
  100. Izumi T, Kawamura K, Ueda H, Bungo T (2004) Central administration of leucine, but not isoleucine and valine, stimulates feeding behavior in neonatal chicks. Neurosci Lett 354:166–168CrossRefPubMedGoogle Scholar
  101. Kalra SP, Dube MG, Sahu A, Phelps CP, Kalra PS (1991) Neuropeptide Y secretion increases in the paraventricular nucleus in association with increased appetite for food. Proc Natl Acad Sci USA 88:10931–10935CrossRefPubMedGoogle Scholar
  102. Kamisoyama H, Honda K, Saneyasu T, Sugahara K, Hasegawa S (2007) Central administration of neuromedin U suppresses food intake in chicks. Neurosci Lett 420:1–5CrossRefPubMedGoogle Scholar
  103. Kamisoyama H, Honda K, Saneyasu T, Sugahara K, Hasegawa S (2009) Corticotropin-releasing factor is a downstream mediator of the beta-melanocyte-stimulating hormone-induced anorexigenic pathway in chicks. Neurosci Lett 458:102–105CrossRefPubMedGoogle Scholar
  104. Kawakami S-I, Bungo T, Ando R, Ohgushi A, Shimojo M, Masuda Y, Furuse M (2000a) Central administration of α-melanocyte stimulating hormone inhibits fasting- and neuropeptide Y-induced feeding in neonatal chicks. Eur J Pharmacol 398:361–364CrossRefPubMedGoogle Scholar
  105. Kawakami S-I, Bungo T, Ohgushi A, Ando R, Shimojo M, Masuda Y, Denbow DM, Furuse M (2000b) Brain-derived mast cells could mediate histamine-induced inhibition of food intake in neonatal chicks. Brain Res 857:313–316CrossRefPubMedGoogle Scholar
  106. Kennedy GC (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc R Soc London Ser B-Biol Sci 140:578–596CrossRefGoogle Scholar
  107. Khan MS, Nakano Y, Tachibana T, Ueda H (2008) Nitric oxide synthase inhibitor attenuates the anorexigenic effect of corticotropin-releasing hormone in neonatal chicks. Comp Biochem Physiol Part A, Mol Integr Physiol 149:325–329CrossRefGoogle Scholar
  108. Khan MS, Ohkubo T, Masuda N, Tachibana T, Ueda H (2009) Central administration of metastin increases food intake through opioid neurons in chicks. Comp Biochem Physiol Part A: Mol Integr Physiol 153:209–212CrossRefGoogle Scholar
  109. Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T (1993) Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun 192:553–560CrossRefPubMedGoogle Scholar
  110. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–660CrossRefPubMedPubMedCentralGoogle Scholar
  111. Koutoku T, Takahashi H, Tomonaga S, Oikawa D, Saito S, Tachibana T, Han L, Hayamizu K, Denbow DM, Furuse M (2005) Central administration of phosphatidylserine attenuates isolation stress-induced behavior in chicks. Neurochem Int 47:183–189CrossRefPubMedGoogle Scholar
  112. Kuenzel WJ, McMurtry J (1988) Neuropeptide Y: brain localization and central effects on plasma insulin levels in chicks. Physiol Behav 44:669–678CrossRefPubMedGoogle Scholar
  113. Kuenzel WJ, Douglass LW, Davison BA (1987) Robust feeding following central administration of neuropeptide Y or peptide YY in chicks, Gallus domesticus. Peptides 8:823–828CrossRefPubMedGoogle Scholar
  114. Kurata K, Shigemi K, Tomonaga S, Aoki M, Morishita K, Denbow DM, Furuse M (2011) l-Ornithine attenuates corticotropin-releasing factor-induced stress responses acting at GABAA receptors in neonatal chicks. Neuroscience 172:226–231CrossRefPubMedGoogle Scholar
  115. Larsen PJ, Tang-Christensen M, Jessop DS (1997) Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Endocrinol 138:4445–4455CrossRefGoogle Scholar
  116. Latshaw JD (1993) Dietary lysine concentrations from deficient to excessive and the effects on broiler chicks. Br Poult Sci 34:951–958CrossRefPubMedGoogle Scholar
  117. Lawler A (2015) Why did the chicken cross the world?. Duckworth Overlook, LondonGoogle Scholar
  118. Lawrence CB, Celsi F, Brennand J, Luckman SM (2000) Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat Neurosci 3:645–646CrossRefPubMedGoogle Scholar
  119. Lawrence CB, Ellacott KL, Luckman SM (2002) PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology 143:360–367CrossRefPubMedGoogle Scholar
  120. Layne JL, Hunt KE, True T, Gill RS, Combos RE, Cline MA (2009) Central calcitonin exerts anoretic effects via the hypothalamus in chicks. Pharmacol Biochem Behav 92:433–438CrossRefPubMedGoogle Scholar
  121. Ling MK, Hotta E, Kilianova Z, Haitina T, Ringholm A, Johansson L, Gallo-Pavet N, Takeuchi S, Schioth HB (2004) The melanocortin receptor subtypes in chicken have high preference to ACTH-derived peptides. Br J Pharmacol 143:626–637CrossRefPubMedPubMedCentralGoogle Scholar
  122. Masunari K, Khan MS, Cline MA, Tachibana T (2013) Central administration of mesotocin inhibits feeding behavior in chicks. Regul Pept 187:1–5CrossRefPubMedGoogle Scholar
  123. Masunari K, Cline MA, Khan SI, Tachibana T (2016) Feeding response following central administration of mesotocin and arginine-vasotocin receptor agonists in chicks (Gallus gallus). Physiol Behav 153:149–154CrossRefPubMedGoogle Scholar
  124. Matsuda Y, Higashino K, Adachi K, Amuro Y, Hada T (1995) Production of pipecolic acid from intestinal bacteria: plasma levels of pipecolic acid in patients with liver cirrhosis decreased after oral kanamysine administration. Int Hepatol Commun 4:26–34CrossRefGoogle Scholar
  125. Mayer J (1953) Glucostatic mechanism of regulation of food intake. New Engl J Med 249:13–16CrossRefPubMedGoogle Scholar
  126. McConn BR, Park J, Gilbert ER, Cline MA (2015) A novel role for xenopsin: stimulation of food intake. Behav Brain Res 292:500–507CrossRefPubMedGoogle Scholar
  127. Mellinkoff SM, Frankland M, Boyle D, Greipel M (1956) Relationship between serum amino acid concentration and fluctuations in appetite. J Appl Physiol 8:535–538CrossRefPubMedGoogle Scholar
  128. Mena Gomez MA, Carlsson A, Garcia de Yebenes J (1978) The effect of β-alanine on motor behaviour, body temperature and cerebral monoamine metabolism in rat. J Neural Transm 43:1–9CrossRefPubMedGoogle Scholar
  129. Mistry AM, Swick AG, Romsos DR (1997) Leptin rapidly lowers food intake and elevates metabolic rates in lean and ob/ob mice. J Nutr 127:2065–2072CrossRefPubMedGoogle Scholar
  130. Moghaddam AG, Yaghoobi MM, Jonaidi H, Mahani MTZ, Sepehri H (2009) Oxyntomodulin reduces expression of glucagon-like peptide 1 receptor in the brainstem of chickens. J Anim Physiol Anim Nutr 94:422–428Google Scholar
  131. Moriya R, Sano H, Umeda T, Ito M, Takahashi Y, Matsuda M, Ishihara A, Kanatani A, Iwaasa H (2006) RFamide peptide QRFP43 causes obesity with hyperphagia and reduced thermogenesis in mice. Endocrinology 147:2916–2922CrossRefPubMedGoogle Scholar
  132. Morris SM Jr (2004) Enzymes of arginine metabolism. J Nutr 134:2743S–7274SCrossRefPubMedGoogle Scholar
  133. Murakami H, Akiba Y, Horiguchi M (1992) Growth and utilization of nutrients in newly-hatched chick with or without removal of residual yolk. Growth Dev Aging 56(2):75–84PubMedGoogle Scholar
  134. Nakazato M, Hanada R, Murakami N, Date Y, Mondal MS, Kojima M, Yoshimatsu H, Kangawa K, Matsukura S (2000) Central effects of neuromedin U in the regulation of energy homeostasis. Biochem Biophys Res Commun 277:191–194CrossRefPubMedGoogle Scholar
  135. Nandar W, Milligan J, Cline MA (2008) Mechanisms of xenin induced anorectic response in chicks (Gallus gallus). Gen Comp Endocrinol 157:58–62CrossRefPubMedGoogle Scholar
  136. Newmyer BA, Cline MA (2009) Neuropeptide SF is associated with reduced food intake in chicks. Behav Brain Res 205:311–314CrossRefPubMedGoogle Scholar
  137. Niimi M (2006) Centrally administered neuropeptide S activates orexin-containing neurons in the hypothalamus and stimulates feeding in rats. J Endocrinol 30:75–79Google Scholar
  138. Nomura Y, Schmidt-Glenewinkel T, Giacobini E (1978) In vitro formation of piperidine, cadaverine and pipecolic acid in chick and mouse brain during development. Dev Neurosci 1:239–249CrossRefGoogle Scholar
  139. Nussdorfer G, Malendowicz L (1998) Role of tachykinins in the regulation of the hypothalamo–pituitary–adrenal axis. Peptides 19:949–968CrossRefPubMedGoogle Scholar
  140. Padian K, Chiappe LM (1998) The origin and early evolution of birds. Biol Rev 73:1–42CrossRefGoogle Scholar
  141. Polidori C, de Caro G, Massi M (2000) The hyperphagic effect of nociceptin/orphanin FQ in rats. Peptides 21:1051–1062CrossRefGoogle Scholar
  142. Prall B, Cline MA (2008) Anorexigenic effects of central neuropeptide K are associated with hypothalamic changes in juvenile Gallus gallus. Gen Comp Endocrinol 159(2–3):130–135CrossRefPubMedGoogle Scholar
  143. Rai A, Singh G, Raffaniello R, Eng J, Raufman JP (1993) Actions of Helodermatidae venom peptides and mammalian glucagon-like peptides on gastric chief cells. Am J Physiol 265:G118–G125PubMedGoogle Scholar
  144. Sahu A, Kalra PS, Dube MG, Kalra SP (1988) Neuropeptide K suppresses feeding in the rat. Regul Pept 23:135–143CrossRefPubMedGoogle Scholar
  145. Saito E-S, Kaiya H, Takagi T, Yamasaki I, Denbow DM, Kangawa K, Furuse M (2002a) Chicken ghrelin and growth hormone-releasing peptide-2 inhibits food intake of neonatal chicks. Eur J Pharmacol 453:75–79CrossRefPubMedGoogle Scholar
  146. Saito E-S, Takagi T, Nakanishi T, Sashihara K, Furuse M (2002b) Ghrelin activates behavior of neonatal chicks in a short period of post-intracerebroventricular injection. J Appl Anim Res 22:33–41CrossRefGoogle Scholar
  147. Saito E-S, Kaiya H, Tachibana T, Tomonaga S, Denbow DM, Kangawa K, Furuse M (2005a) Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Pept 125:201–208CrossRefPubMedGoogle Scholar
  148. Saito S, Tachibana T, Choi Y-H, Denbow DM, Furuse M (2005b) ICV CRF and isolation stress differentially enhance plasma corticosterone concentrations in layer- and meat-type neonatal chicks. Comp Biochem Physiol A: Mol Integr Physiol 141:305–309CrossRefGoogle Scholar
  149. Sashihara K, Bungo T, Ando R, Ohgushi A, Kawakami S-I, Denbow DM, Furuse M (2002) Role of central serotonergic systems on the regulation of feeding behavior of chicks in two different strains. J Appl Anim Res 21:17–23CrossRefGoogle Scholar
  150. Schmidt-Glenewinkel T, Nomura Y, Giacobini E (1977) The conversion of lysine into piperidine, cadaverine and pipecolic acid in the brain and other organs of the mouse. Neurochem Res 2:619–637CrossRefPubMedGoogle Scholar
  151. Seal LJ, Small CJ, Dhillo WS, Stanley SA, Abbott CR, Ghatei MA, Bloom SR (2001) PRL-releasing peptide inhibits food intake in male rats via the dorsomedial hypothalamic nucleus and not the paraventricular hypothalamic nucleus. Endocrinology 142:4236–4243CrossRefPubMedGoogle Scholar
  152. Shigemi K, Tsuneyoshi Y, Hamasu K, Han L, Hayamizu K, Denbow DM, Furuse M (2008) l-Serine induces sedative and hypnotic effects acting at GABAA receptors in neonatal chicks. Eur J Pharmacol 599:86–90CrossRefPubMedGoogle Scholar
  153. Shimizu H, Bray GA (1989) Effects of neuropeptide Y on norepinephrine and serotonin metabolism in rat hypothalamus in vivo. Brain Res Bull 22:945–950CrossRefPubMedGoogle Scholar
  154. Shipp SL, Yi J, Dridi S, Gilbert ER, Cline MA (2015) The central anorexigenic mechanism of adrenocorticotropic hormone involves the caudal hypothalamus in chicks. Neuropeptides 53:29–35CrossRefPubMedGoogle Scholar
  155. Shiraishi JI, Yanagita K, Fujita M, Bungo T (2008a) Central insulin suppresses feeding behavior via melanocortins in chicks. Domest Anim Endocrinol 34:223–228CrossRefPubMedGoogle Scholar
  156. Shiraishi JI, Yanagita K, Fujita M, Bungo T (2008b) μ-Opioid receptor agonist diminishes POMC gene expression and anorexia by central insulin in neonatal chicks. Neurosci Lett 439:227–229CrossRefPubMedGoogle Scholar
  157. Shiraishi J, Yanagita K, Fukumori R, Sugino T, Fujita M, Kawakami S, McMurtry JP, Bungo T (2011) Comparisons of insulin related parameters in commercial-type chicks: evidence for insulinresistance in broiler chicks. Physiol Behav 103:233–239CrossRefPubMedGoogle Scholar
  158. Sims W, Yi J, Cline MA, Gilbert ER (2017) Central injection of a synthetic chicken partial leptin peptide does not affect food intake in chicks. Neurosci Lett 656:165–168CrossRefPubMedGoogle Scholar
  159. Smith KL, Patterson M, Dhillo WS, Patel SR, Semjonous NM, Gardiner JV, Ghatei MA, Bloom SR (2006) Neuropeptide S stimulates the hypothalamo–pituitary–adrenal axis and inhibits food intake. J Endocrinol 147:3510–3518CrossRefGoogle Scholar
  160. Smith ML, Prall B, Nandar W, Cline MA (2008) Beta-melanocyte stimulating hormone potently reduces appetite via the hypothalamus in chicks. J Neuroendocrinol 20:220–226CrossRefPubMedGoogle Scholar
  161. Smith ML, Kohart NA, Newmyer BA, Cline MA (2009) Gamma(2)-melanocyte stimulating hormone decreases food intake in chicks. Neurosci Lett 465:210–213CrossRefPubMedGoogle Scholar
  162. Suenaga R, Tomonaga S, Yamane H, Kurauchi I, Tsuneyoshi Y, Sato H, Denbow DM, Furuse M (2008a) Intracerebroventricular injection of l-arginine induces sedative and hypnotic effects under an acute stress in neonatal chicks. Amino Acids 35:139–146CrossRefPubMedGoogle Scholar
  163. Suenaga R, Yamane H, Tomonaga S, Asechi M, Adachi N, Tsuneyoshi Y, Kurauchi I, Sato H, Denbow DM, Furuse M (2008b) Central l-arginine reduced stress responses are mediated by l-ornithine in neonatal chicks. Amino Acids 35:107–113CrossRefPubMedGoogle Scholar
  164. Taati M, Nayebzadeh H, Khosravinia H, Cheraghi J (2010) The role of the histaminergic system on the inhibitory effect of ghrelin on feed intake in broiler chickens. Iran J Vet Res 11:38–45Google Scholar
  165. Tachibana T, Sugahara K, Ohgushi A, Ando K, Sashihara K, Yoshimatsu T, Furuse M (2001a) Intracerebroventricular injection of exendin (5–39) increases food intake of layer-type chicks but not broiler chicks. Brain Res 915:234–237CrossRefPubMedGoogle Scholar
  166. Tachibana T, Sugahara K, Ohgushi A, Ando R, Kawakami SI, Yoshimatsu T, Furuse M (2001b) Intracerebroventricular injection of agouti-related protein attenuates the anorexigenic effect of alpha-melanocyte stimulating hormone in neonatal chicks. Neurosci Lett 305:131–134CrossRefPubMedGoogle Scholar
  167. Tachibana T, Saito S, Tomonaga T, Takagi T, Saito E-S, Boswell T, Furuse M (2003a) Intracerebroventricular injection of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibits feeding in chicks. Neurosci Lett 339:203–206CrossRefPubMedGoogle Scholar
  168. Tachibana T, Takagi T, Tomonaga S, Ohgushi A, Ando R, Denbow DM, Furuse M (2003b) Central administration of cocaine- and amphetamine-regulated transcript inhibits food intake in chicks. Neurosci Lett 337:131–134CrossRefPubMedGoogle Scholar
  169. Tachibana T, Saito S, Tomonaga S, Takagi T, Saito E-S, Nakanishi T, Koutoku T, Tsukada A, Ohkubo T, Boswell T, Furuse M (2004a) Effect of central administration of prolactin-releasing peptide on feeding in chicks. Physiol Behav 80:713–719CrossRefPubMedGoogle Scholar
  170. Tachibana T, Saito E-S, Saito S, Tomonaga S, Denbow DM, Furuse M (2004b) Comparison of brain arginine-vasotocin and corticotrophin-releasing factor for physiological responses in chicks. Neurosci Lett 360:165–169CrossRefPubMedGoogle Scholar
  171. Tachibana T, Sato M, Takahashi H, Ukena K, Tsutsui K, Furuse M (2005a) Gonadotropin-inhibiting hormone stimulates feeding behavior in chicks. Brain Res 1050:94–100CrossRefPubMedGoogle Scholar
  172. Tachibana T, Tsukada A, Fujimoto M, Takahashi H, Ohkubo T, Boswell T, Furuse M (2005b) Comparison of mammalian prolactin-releasing peptide and Carassius RFamide for feeding behavior and prolactin secretion in chicks. Gen Comp Endocrinol 144:264–269CrossRefPubMedGoogle Scholar
  173. Tachibana T, Sato M, Oikawa D, Furuse M (2006) Involvement of CRF on the anorexic effect of GLP-1 in layer chicks. Comp Biochem Physiol A: Mol Integr Physiol 143:112–117CrossRefGoogle Scholar
  174. Tachibana T, Oikawa D, Adachi N, Boswell T, Furuse M (2007) Central administration of alpha-melanocyte-stimulating hormone changes lipid metabolism in chicks. Comp Biochem Physiol A: Mol Integr Physiol 148:408–412CrossRefGoogle Scholar
  175. Tachibana T, Masuda N, Tsutsui K, Ukena K, Ueda H (2008a) The orexigenic effect of GnIH is mediated by central opioid receptors in chicks. Comp Biochem Physiol A: Mol Integr Physiol 150:21–25CrossRefGoogle Scholar
  176. Tachibana T, Mori M, Khan MS, Ueda H, Sugahara K, Hiramatsu K (2008b) Central administration of galanin stimulates feeding behavior in chicks. Comp Biochem Physiol A: Mol Integr Physiol 151:637–640CrossRefGoogle Scholar
  177. Tachibana T, Cline MA, Sugahara K, Ueda H, Hiramatsu K (2009) Central administration of somatostatin stimulates feeding behavior in chicks. Gen Comp Endocrinol 161:354–359CrossRefPubMedGoogle Scholar
  178. Tachibana T, Matsuda K, Sawa H, Mikami A, Ueda H, Cline MA (2010a) Differential thresholds of neuromedins B-, C-, and bombesin-induced anorexia and crop-emptying rate in chicks. Gen Comp Endocrinol 169:144–150CrossRefPubMedGoogle Scholar
  179. Tachibana T, Matsuda K, Khan MS, Ueda H, Cline MA (2010b) Feeding and drinking response following central administration of neuromedin S in chicks. Comp Biochem Physiol A: Mol Integr Physiol 157:63–67CrossRefGoogle Scholar
  180. Tachibana T, Khan MS, Matsuda K, Ueda H, Cline MA (2010c) Central administration of substance P inhibits feeding behavior in chicks. Horm Behav 57:203–208CrossRefPubMedGoogle Scholar
  181. Takagi T, Ando R, Ohgushi A, Yamashita T, Dobashi E, Hussain-Yusuf H, Onodera R, Bungo T, Sato H, Furuse M (2001) Intracerebroventricular injection of L-pipecolic acid inhibits food intake and induces sleeping-like behaviors in the neonatal chick. Neurosci Lett 310:97–100CrossRefPubMedGoogle Scholar
  182. Takagi T, Bungo T, Tachibana T, Saito E-S, Saito S, Yamasaki I, Tomonaga S, Denbow DM, Furuse M (2003a) Intracerebroventricular administration of GABA-A and GABA-B receptor antagonists attenuate feeding and sleep-like behavior induced by l-pipecolic acid in the neonatal chick. J Neurosci Res 73:270–275CrossRefPubMedGoogle Scholar
  183. Takagi T, Tachibana T, Saito E-S, Tomonaga S, Saito S, Bungo T, Denbow DM, Furuse M (2003b) Central pipecolic acid increases food intake under ad libitum feeding conditions in the neonatal chick. Neurosci Lett 347:93–96CrossRefPubMedGoogle Scholar
  184. Taouis M, Chen J-W, Daviaud C, Dupont J, Derouet M, Simon J (1998) Cloning the chicken leptin gene. Gene 208:239–242CrossRefPubMedGoogle Scholar
  185. Tomonaga S, Tachibana T, Takagi T, Saito E-S, Zhang R, Denbow DM, Furuse M (2004) Effect of central administration of carnosine and its constituents on behaviors in chicks. Brain Res Bull 63:75–82CrossRefPubMedGoogle Scholar
  186. Tomonaga S, Tachibana T, Takahashi H, Sato M, Denbow DM, Furuse M (2005) Nitric oxide involved in carnosine induced hyperactivity in chicks. Eur J Pharmacol 524:84–88CrossRefPubMedGoogle Scholar
  187. Tran PV, Chowdhury VS, Nagasawa M, Furuse M (2015) Changes in free amino acid and monoamine concentrations in the chick brain associated with feeding behavior. Springerplus 4:252CrossRefPubMedPubMedCentralGoogle Scholar
  188. Tran PV, Chowdhury VS, Do PH, Bahry MA, Yang H, Furuse M (2016) L-Ornithine is a potential acute satiety signal in the brain of neonatal chicks. Physiol Behav 155:141–148CrossRefPubMedGoogle Scholar
  189. Tschop M, Smiley DL, Heiman ML (2000) Ghrelin induces adiposity in rodents. Nature 407:908–913CrossRefPubMedGoogle Scholar
  190. Tsutsui K, Saigoh E, Ukena K, Teranishi H, Fujisawa Y, Kikuchi M, Ishii S, Sharp PJ (2000) A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem Biophys Res Commun 275:661–667CrossRefPubMedGoogle Scholar
  191. Tudge C (2008) The secret life of birds. Penguin Books, LondonGoogle Scholar
  192. Turro I, Dunnington EA, Nitsan Z, Picard M, Siegel PB (1994) Effect of yolk sac removal at hatch on growth and feeding behavior in lines of chickens differing in body weight. Growth Dev Aging 58(2):105–112PubMedGoogle Scholar
  193. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, Choi SJ, Taylor GM, Heath MM, Lambert PD, Wilding JP, Smith DM, Ghatei MA, Herbert J, Bloom SR (1996) A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379:69–72CrossRefPubMedGoogle Scholar
  194. Ukena K, Tachibana T, Iwakoshi-Ukena E, Saito Y, Minakata H, Kawaguchi R, Osugi T, Tobari Y, Leprince J, Vaudry H, Tsutsui K (2010) Identification, localization, and function of a novel avian hypothalamic neuropeptide, 26RFa, and its cognate receptor, G protein-coupled receptor-103. Endocrinology 151:2255–2264CrossRefPubMedGoogle Scholar
  195. Vaccarino FJ (1990) Growth hormone-releasing factor and feeding. Behavioral evidence for direct central actions. Ann N Y Acad Sci 579:227–232CrossRefPubMedGoogle Scholar
  196. van Luijtelaar ELJM, Van Der Grinten CPM, Blokhuis HJ, Coenen AML (1987) Sleep in the domestic hen (Gallus domesticus). Physiol Behav 41:409–414CrossRefPubMedGoogle Scholar
  197. Wang G, Brumfield B, DiCroce M, Nelson L, Newmyer BA, Flower J, Hipskind K, Sharma S, Gilbert ER, Cline MA (2014) Anorexigenic effects of central adrenomedullin are associated with hypothalamic changes in juvenile Gallus gallus. Gen Comp Endocrinol 204:223–228CrossRefPubMedGoogle Scholar
  198. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR (2000) The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology 141:4325–4328CrossRefPubMedGoogle Scholar
  199. Wu FS, Gibbs TT, Farb DH (1993) Dual activation of GABAA and glycine receptors by β-alanine: inverse modulation by progesterone and 5 α-pregnan-3α-ol-20-one. Eur J Pharmacol 246:239–246CrossRefPubMedGoogle Scholar
  200. Yamane H, Denbow DM, Furuse M (2009a) Screening of dipeptides having central functions for excitation and sedation. Mini Rev Med Chem 9:300–305CrossRefPubMedGoogle Scholar
  201. Yamane H, Asechi M, Tsuneyoshi Y, Kurauchi I, Denbow DM, Furuse M (2009b) Intracerebroventricular injection of l-Aspartic acid and l-Asparagine induces sedative effects under an acute stressful condition in neonatal chicks. Anim Sci J 80:286–290CrossRefPubMedGoogle Scholar
  202. Yamane H, Tsuneyoshi Y, Denbow DM, Furuse M (2009c) N-Methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors involved in the induction of sedative effects under an acute stress in neonatal chicks. Amino Acids 37:733–739CrossRefPubMedGoogle Scholar
  203. Yanagita K, Shiraishi J, Fujita M, Bungo T (2008a) Effects of N-terminal fragments of β-endorphin on feeding in chicks. Neurosci Lett 442:140–142CrossRefPubMedGoogle Scholar
  204. Yanagita K, Shiraishi J, Fujita M, Bungo T (2008b) Mu-opioid receptor is involved in beta-endorphin-induced feeding in the meat-type chick. J Poult Sci 45:139–142CrossRefGoogle Scholar
  205. Yoshida J, Tomonaga S, Ogino Y, Nagasawa M, Kurata K, Furuse M (2012) Intracerebroventricular injection of kynurenic acid attenuates corticotrophin-releasing hormone-augmented stress responses in neonatal chicks. Neuroscience 220:142–148CrossRefPubMedGoogle Scholar
  206. Yoshida J, Shigemura A, Ogino Y, Denbow DM, Furuse M (2013) Two receptors are involved in the central functions of kynurenic acid under an acute stress in neonatal chicks. Neuroscience 248:194–200CrossRefPubMedGoogle Scholar
  207. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CrossRefPubMedGoogle Scholar
  208. Zhang R, Nakanishi T, Ohgushi A, Ando R, Yoshimatsu T, Denbow DM, Furuse M (2001) Suppression of food intake induced by corticotropin-releasing factor family in neonatal chicks. Eur J Pharmacol 427:37–41CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Regulation in Metabolism and BehaviorGraduate School of Bioresource and Bioenvironmental ScienceFukuokaJapan
  2. 2.Laboratory of Stress Physiology and Metabolism, Faculty of Arts and ScienceKyushu UniversityFukuokaJapan

Personalised recommendations