Advertisement

Amino Acids

, Volume 51, Issue 4, pp 679–690 | Cite as

Enzyme self-assembly on naked iron oxide nanoparticles for aminoaldehyde biosensing

  • Massimiliano Magro
  • Davide Baratella
  • Giovanni Miotto
  • Jan Frömmel
  • Marek Šebela
  • Martina Kopečná
  • Enzo Agostinelli
  • Fabio VianelloEmail author
Original Article
  • 387 Downloads

Abstract

The preservation of enzymatic activity is a fundamental requirement for exploiting hybrid nano-bio-conjugates, and the control over protein–nanoparticle interactions, leading to stable and catalytically active hybrids, represents the key for designing new biosensing platforms. In this scenario, surface active maghemite nanoparticles (SAMNs) represent a new class of naked magnetic nanoparticles, displaying peculiar electrocatalytic features and the ability to selectively bind proteins. Recombinant aminoaldehyde dehydrogenase from tomato (SlAMADH1) was used as a model protein, and successfully immobilized by self-assembly on the surface of naked SAMNs, where its enzymatic activity resulted preserved for more than 6 months. The hybrid nanomaterial (SAMN@SlAMADH1) was characterized by UV–Vis spectroscopy, mass spectrometry, and TEM microscopy, and applied for the development of a biosensor for the determination of aminoaldehydes in alcoholic beverages. Measurements were carried out in a low volume electrochemical flow cell comprising a SAMN modified carbon paste electrode for the coulometric determination of the NADH produced during the enzymatic catalysis. The present findings, besides representing the first example of an electrochemical biosensor for aminoaldehydes in an alcoholic matrix, open the door to the use of immobilized enzymes on naked metal oxides nanomaterials for biosensing.

Keywords

Metal nanoparticles Nanomaterial electrocatalysis NADH electro-oxidation Coulometric detection Aminoaldehyde dehydrogenase Aminoaldehyde biosensor 

Abbreviations

APAL

3-Aminopropionaldehyde diethylacetal

CP

Carbon paste

CPE

Carbon paste electrode

CV

Cyclic voltammetry

FDR

False discovery rates

FTIR

Fourier-transform infrared

His-tag

Histidine-tag

IDA

Iminodiacetate

IPTG

Isopropyl β-d-1-thiogalactopyranoside

LB

Luria–Bertani

LC

Liquid chromatography

LOD

Limit of detection

MGF

Mascot generic format

MS

Mass spectrometry

NADH

Nicotinamide adenine dinucleotide

Q-TOF

Quadrupole time of flight

RP

Reverse-phase

RSD

Relative standard deviation

SAMNs

Surface active maghemite nanoparticles

SlAMADH1

(Solanum lycopersium) aminoaldehyde dehydrogenase 1

SCE

Saturated calomel electrode

SD

Standard deviation

S/N

Signal/noise

TEM

Transmission electron microscopy

TRIS

Tris(hydroxymethyl)aminomethane

UV–Vis

Ultraviolet–visible

XRD

X-ray diffraction

Notes

Acknowledgements

The present experimental work was partially funded by Italian Institutional Ministry Grants Cod. 60A06-7411 and 60A06-8055. The authors gratefully acknowledge the University of Padua (Italy), Grant PRAT 2015 (progetti di Ateneo) n. CPDA159850 and the CARIPARO Foundation for the support. The team members from the Czech Republic were supported by Grant No. LO1204 from the Ministry of Education, Youth and Sports. The authors also thank ‘La Sapienza’ University of Rome and Italian MIUR (Ministero dell’Istruzione, dell’Università e della Ricerca). Our gratitude is also due to the “International Polyamine Foundation-ONLUS” for the availability to look up in the Polyamines documentation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest with the contents of this article.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

726_2019_2704_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 26 kb)

References

  1. Adalberto PR, José dos Santos F, Golfeto CC, Costa Iemma MR, Ferreira de Souza DH, Cass QB (2012) Immobilization of pectinase from Leucoagaricus gongylophorus on magnetic particles. Analyst 137:4855–4859.  https://doi.org/10.1039/C2AN35682A CrossRefPubMedGoogle Scholar
  2. Baratella D, Magro M, Sinigaglia G, Zboril R, Salviulo G, Vianello F (2013) A glucose biosensor based on surface active maghemite nanoparticles. Biosens Bioelectron 45:13–18.  https://doi.org/10.1016/j.bios.2013.01.043 CrossRefPubMedGoogle Scholar
  3. Bonaiuto E, Magro M, Baratella D, Jakubec P, Sconcerle E, Terzo M, Miotto G, Macone A, Agostinelli E, Fasolato S, Venerando R, Salviulo G, Malina O, Zboril R, Vianello F (2016) Ternary hybrid γ-Fe2O3/CrVI/amine oxidase nanostructure for electrochemical sensing: application for polyamine detection in tumor tissue. Chem Eur J 22:1–8.  https://doi.org/10.1002/chem.201600156 CrossRefGoogle Scholar
  4. Choi SH, Kim HS, Lee IS, Lee EY (2010) Functional expression and magnetic nanoparticle-based immobilization of a protein-engineered marine fish epoxide hydrolase of Mugil cephalus for enantioselective hydrolysis of racemic styrene oxide. Biotechnol Lett 32:1685–1691.  https://doi.org/10.1007/s10529-010-0335-4 CrossRefPubMedGoogle Scholar
  5. Chong ASM, Zhao XS (2004) Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst. Catal Today 93–95:293–299.  https://doi.org/10.1016/j.cattod.2004.06.064 CrossRefGoogle Scholar
  6. Fersht A (1984) Enzyme structure and mechanism. W.H. Freeman & Co, New YorkGoogle Scholar
  7. Frömmel J, Soural M, Tylichová M, Kopečný D, Demo G, Wimmerová M, Šebela M (2012) Plant aminoaldehyde dehydrogenases oxidize a wide range of nitrogenous heterocyclic aldehydes. Amino Acids 43:1189–1202.  https://doi.org/10.1007/s00726-011-1174-x CrossRefPubMedGoogle Scholar
  8. Frömmel J, Tarkowski P, Kopečný D, Šebela M (2016) The use of tomato aminoaldehyde dehydrogenase 1 for the detection of aldehydes in fruit distillates. New Biotechnol 33:666–675.  https://doi.org/10.1016/j.nbt.2015.11.010 CrossRefGoogle Scholar
  9. Garcia J, Zhang Y, Taylor H, Cespedes O, Webb ME, Zhou D (2011) Multilayer enzyme-coupled magnetic nanoparticles as efficient, reusable biocatalysts and biosensors. Nanoscale 3:3721–3730.  https://doi.org/10.1039/C1NR10411J CrossRefPubMedGoogle Scholar
  10. He C, Liu D, Lin W (2015) Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem Rev 115:11079–11108.  https://doi.org/10.1021/acs.chemrev.5b00125 CrossRefPubMedGoogle Scholar
  11. Johnson KA (2008) Role of induced fit in enzyme specificity: a molecular forward/reverse switch. J Biol Chem 283:26297–26301.  https://doi.org/10.1074/jbc.R800034200 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kluchova K, Zboril R, Tucek J, Pecova M, Zajoncova L, Safarik I, Mashlan M, Markova I, Jancik D, Sebela M, Bartonkova H, Bellesi V, Novak P, Petridis D (2009) Superparamagnetic maghemite nanoparticles from solid-state synthesis-their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. Biomaterials 30:2855–2863.  https://doi.org/10.1016/j.biomaterials.2009.02.023 CrossRefPubMedGoogle Scholar
  13. Kwon HS, Han KC, Hwang KS, Lee JH, Kim TS, Yoon DS, Yang EG (2007) Development of a peptide inhibitor-based cantilever sensor assay for cyclic adenosine monophosphate-dependent protein kinase. Anal Chim Acta 585:344–349.  https://doi.org/10.1016/j.aca.2006.12.037 CrossRefPubMedGoogle Scholar
  14. Li GY, Huang KL, Jiang YR, Yang DL, Ding P (2008) Preparation and characterization of Saccharomyces cerevisiae alcohol dehydrogenase immobilized on magnetic nanoparticles. Int J Biol Macromol 42:405–412.  https://doi.org/10.1016/j.ijbiomac.2008.01.005 CrossRefPubMedGoogle Scholar
  15. Lucas IT, Durand-Vidal S, Dubois E, Chevalet J, Turq P (2007) Surface charge density of maghemite nanoparticles: role of electrostatics in the proton exchange. J Phys Chem C. 111:18568–18576CrossRefGoogle Scholar
  16. Magro M, Faralli A, Baratella D, Bertipaglia I, Giannetti S, Salviulo G, Zboril R, Vianello F (2012a) Avidin functionalized maghemite nanoparticles and their application for recombinant human biotinyl-SERCA purification. Langmuir 28:15392–15401.  https://doi.org/10.1021/la303148u CrossRefPubMedGoogle Scholar
  17. Magro M, Sinigaglia G, Nodari L, Tucek J, Polakova K, Zdenĕk M, Cardillo S, Salviulo G, Russo U, Zboril R, Stevanato R, Vianello F (2012b) Charge binding of rhodamine derivative to OH– stabilized nanomaghemite: universal nanocarrier for construction of magnetofluorescent biosensors. Acta Biomater 8:2068–2076.  https://doi.org/10.1016/j.actbio.2012.02.005 CrossRefPubMedGoogle Scholar
  18. Magro M, Baratella D, Pianca N, Toninello A, Grancara S, Zboril R, Vianello F (2013) Electrochemical determination of hydrogen peroxide by isolated mitochondria: a novel nanocomposite carbon-maghemite nanoparticle electrode. Sens Actuators B Chem 176:315–322.  https://doi.org/10.1016/j.snb.2012.09.044 CrossRefGoogle Scholar
  19. Magro M, Campos R, Baratella D, Lima G, Hola K, Divoky C, Stollberger R, Malina O, Aparicio C, Zoppellaro G, Zboril R, Vianello F (2014) A magnetically drivable nanovehicle for curcumin with antioxidant capacity and MRI relaxation properties. Chem Eur J 20:11913–11920.  https://doi.org/10.1002/chem.201402820 CrossRefPubMedGoogle Scholar
  20. Magro M, Baratella D, Jakubec P, Zoppellaro G, Tucek J, Aparicio C, Venerando R, Sartori G, Francescato F, Mion F, Gabellini N, Zboril R, Vianello F (2015a) Triggering mechanism for DNA electrical conductivity: reversible electron transfer between DNA and iron oxide nanoparticles. Adv Funct Mater 25:1822–1831.  https://doi.org/10.1002/adfm.201404372 CrossRefGoogle Scholar
  21. Magro M, Baratella D, Salviulo G, Polakova K, Zoppellaro G, Tucek J, Kaslik J, Zboril R, Vianello F (2015b) Core–shell hybrid nanomaterial based on prussian blue and surface active maghemite nanoparticles as stable electrocatalyst. Biosens Bioelectron 52:159–165.  https://doi.org/10.1016/j.bios.2013.08.052 CrossRefGoogle Scholar
  22. Magro M, Valle G, Russo U, Nodari L, Vianello F (2015c) Maghemite nanoparticles and method for preparing thereof. US Patent 8,980,218Google Scholar
  23. Magro M, Martinello T, Bonaiuto E, Gomiero C, Baratella D, Zoppellaro G, Cozza G, Patruno M, Zboril R, Vianello F (2017) Covalently bound DNA on naked iron oxide nanoparticles: intelligent colloidal nano-vector for cell transfection. Biochim Biophys Acta 1861:2802–2810.  https://doi.org/10.1016/j.bbagen.2017.07.025 CrossRefGoogle Scholar
  24. Magro M, Zaccarin M, Miotto G, Da Dalt L, Baratella D, Fariselli P, Gabai G, Vianello F (2018) Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome. Anal Bioanal Chem 410:2949–2959.  https://doi.org/10.1007/s00216-018-0976-z CrossRefPubMedGoogle Scholar
  25. Mahmoudi M, Bertrand N, Zope H, Farokzad OC (2016) Emerging understanding of the protein corona at the nano-bio interfaces. Nano Today 11:817–832.  https://doi.org/10.1016/j.nantod.2016.10.005 CrossRefGoogle Scholar
  26. Misson M, Zhang H, Jin B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12:20140891.  https://doi.org/10.1098/rsif.2014.0891 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Netto CGCM, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B 85–86:71–92.  https://doi.org/10.1016/j.molcatb.2012.08.010 CrossRefGoogle Scholar
  28. Niemirowicz K, Markiewicz KH, Wilczewska AZ, Car H (2012) Magnetic nanoparticles as new diagnostic tools in medicine. Adv Med Sci 57:196–207.  https://doi.org/10.2478/v10039-012-0031-9 CrossRefPubMedGoogle Scholar
  29. Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B Enz 61:208–215.  https://doi.org/10.1016/j.molcatb.2009.07.003 CrossRefGoogle Scholar
  30. Parracino A, Gajula GP, di Gennaro AK, Neves-Petersen MT, Rafaelse J, Petersen SB (2011) Towards nanoscale biomedical devices in medicine: biofunctional and spectroscopic characterization of superparamagnetic nanoparticles. J Fluoresc 21:663–672.  https://doi.org/10.1007/s10895-010-0754-6 CrossRefPubMedGoogle Scholar
  31. Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2:81–87.  https://doi.org/10.4103/2231-4040.82950 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Radoi A, Compagnone D (2009) Recent advances in NADH electrochemical sensing design. Bioelectrochemistry 76:126–134.  https://doi.org/10.1016/j.bioelechem.2009.06.008 CrossRefPubMedGoogle Scholar
  33. Rajh T, Chen LX, Lukas K, Liu T, Thurnauer MC, Tiede DM (2002) Surface restructuring of nanoparticles: an efficient route for ligand–metal oxide crosstalk. J Phys Chem B 106:10543–10552.  https://doi.org/10.1021/jp021235v CrossRefGoogle Scholar
  34. Rana S, Yeh YC, Rotello VM (2010) Engineering the nanoparticle-protein interface: applications and possibilities. Curr Opin Chem Biol 14:828–834.  https://doi.org/10.1016/j.cbpa.2010.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rawal R, Chawla S, Pundir DCS (2012) An amperometric biosensor based on laccase immobilized onto Fe3O4NPs/cMWCNT/PANI/Au electrode for determination of phenolic content in tea leaves extract. Enzyme Microb Technol 51:179–185.  https://doi.org/10.1016/j.enzmictec.2012.06.001 CrossRefPubMedGoogle Scholar
  36. Ren Y, Rivera JG, He L, Kulkarni H, Lee DK, Messersmith PB (2011) Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating. BMC Biotechnol 11:63–70.  https://doi.org/10.1186/1472-6750-11-63 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Sahoo B, Sahu SK, Bhattacharya D, Dhara D, Pramanik P (2013) A novel approach for efficient immobilization and stabilization of papain on magnetic gold nanocomposites. Coll Surf B Biointerfaces 101:280–289.  https://doi.org/10.1016/j.colsurfb.2012.07.003 CrossRefGoogle Scholar
  38. Samec Z, Elving PJ (1983) Anodic oxidation of dihydronicotinamide adenine dinucleotide at solid electrodes; mediation by surface species. J Electroanal Chem 144:217–234.  https://doi.org/10.1016/S0022-0728(83)80157-0 CrossRefGoogle Scholar
  39. Tylichová M, Kopečný D, Moréra S, Briozzo P, Lenobel R, Snégaroff J, Šebela M (2010) Structural and functional characterization of plant aminoaldehyde dehydrogenase from Pisum sativum with a broad specificity for natural and synthetic aminoaldehydes. J Mol Biol 396:870–882.  https://doi.org/10.1016/j.jmb.2009.12.015 CrossRefPubMedGoogle Scholar
  40. Urbanova V, Magro M, Gedanken A, Baratella D, Vianello F, Zboril R (2014) Nanocrystalline iron oxides, composites, and related materials as a platform for electrochemical, magnetic, and chemical biosensors. Chem Mater 26:6653–6673.  https://doi.org/10.1021/cm500364x CrossRefGoogle Scholar
  41. Venerando R, Miotto G, Magro M, Dallan M, Baratella D, Bonaiuto E, Zboril R, Vianello F (2013) Magnetic nanoparticles with covalently bound self-assembled protein corona for advanced biomedical applications. J Phys Chem C 117:20320–20331.  https://doi.org/10.1021/jp4068137 CrossRefGoogle Scholar
  42. Xin BJ, Si SF, Xing GW (2010) Protease immobilization on γ-Fe2O3/Fe3O4 magnetic nanoparticles for the synthesis of oligopeptides in organic solvents. Chem Asian J 5:1389–1394.  https://doi.org/10.1002/asia.200900696 CrossRefPubMedGoogle Scholar
  43. Zhang HL, Lai GS, Han DY, Yu AM (2008) An amperometric hydrogen peroxide biosensor based on immobilization of horseradish peroxidase on an electrode modified with magnetic dextran microspheres. Anal Bioanal Chem 390:971–977.  https://doi.org/10.1007/s00216-007-1748-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Comparative Biomedicine and Food ScienceUniversity of PaduaLegnaroItaly
  2. 2.Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic
  3. 3.Department of Molecular MedicineUniversity of PaduaPaduaItaly
  4. 4.Proteomic Center of Padua University, VIMM and Padua University HospitalPaduaItaly
  5. 5.Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of SciencePalacký University in OlomoucOlomoucCzech Republic
  6. 6.Department of Biochemical Sciences “A. Rossi Fanelli”University of Rome La Sapienza and CNR, Institute of Biology and Molecular PathologyRomeItaly
  7. 7.International Polyamines Foundation-ONLUSRomeItaly

Personalised recommendations