Advertisement

Amino Acids

, Volume 51, Issue 4, pp 661–667 | Cite as

Synthesis of selenopeptides: an alternative way of incorporating selenocystine

  • Selvaraj Aravindhan
  • Harkesh B. SinghEmail author
  • Matthias Zeller
  • Ray J. Butcher
Original Article
  • 290 Downloads

Abstract

Selenocysteine (Sec) residue cannot be directly attached to a peptide sequence unless the selenol form is protected beforehand and several problems have been reported in the preparation of Sec building blocks. In this article a series of selenocystine, the oxidized form of Sec, containing peptides has been synthesized using a new methodology, where Boc-NH-chloroalanine is coupled with methyl ester protected residues (Ala, Met, Phe) using DCC/HOBt as the coupling reagents providing di- and tripeptides. Further, the treatment of disodium diselenide with chloroalanine peptides (Boc-ClAla-Ala-OMe, Boc-ClAla-Met-OMe and Boc-ClAla-Ala-Phe-OMe) afforded the respective selenocystine-containing peptides (Boc-Sec-Ala-OMe, Boc-Sec-Met-OMe and Boc-Sec-Ala-Phe-OMe).

Keywords

Disodium diselenide Selenopeptide Selenocysteine Selenocystine 

Notes

Acknowledgements

H. B. S. is grateful to the Department of Science and Technology, New Delhi, for a J. C. Bose Fellowship. A.S. gratefully acknowledges the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for research fellowship. H. B. S. and S. A are thankful to Prof. M. Iwaoka for scientific discussion.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

726_2019_2698_MOESM1_ESM.docx (4.3 mb)
Supplementary material 1 (DOCX 4445 kb)

References

  1. Abbas M, Wessjohann LA (2012) Direct synthesis of sensitive selenocysteine peptides by the Ugi reaction. Org Biomol Chem 10:9330–9333CrossRefGoogle Scholar
  2. Abbas M, Bethke J, Wessjohann LA (2006) One pot synthesis of selenocysteine containing peptoid libraries by Ugi multicomponent reactions in water. Chem Commun 541–543Google Scholar
  3. Alewood PF, Muttenthaler M (2008) Selenopeptide chemistry. J Pept Sci 14:1223–1239CrossRefGoogle Scholar
  4. Antony Raj P, Soni SD, Ramasubbu N, Bhandary KK, Levine MJ (1900) Crystal structure and solution conformation of S,S′-bis(Boc-Cys-Ala-OMe): intramolecular antiparallel β-sheet conformation of an acyclic cystine peptide. Biopolymers 30:73–85Google Scholar
  5. Araujo AD, Mobli D, King GF, Alewood PE (2012) Cyclization of peptides by using selenolanthionine bridges. Angew Chem Int Ed 51:10298–10302CrossRefGoogle Scholar
  6. Atkins JF, Gesteland RF (2000) Translation: the twenty-first amino acid. Nature 407:463–464CrossRefGoogle Scholar
  7. Beld J, Woycechowsky KJ, Hilvert D (2007) Selenoglutathione: efficient oxidative protein folding by a diselenide. Biochemistry 46:5382–5390CrossRefGoogle Scholar
  8. Besse D, Moroder L (1997) Synthesis of selenocysteine peptides and their oxidation to diselenide-bridged compounds. J Pept Sci 3:442–453CrossRefGoogle Scholar
  9. Besse D, Siedler F, Diercks T, Kessler H, Moroder L (1997) The redox potential of selenocystine in unconstrained cyclic peptides. Angew Chem Int Ed 36:883–885CrossRefGoogle Scholar
  10. Bhuyan BJ, Mugesh G (2011) Synthesis, characterization and antioxidant activity of angiotensin converting enzyme inhibitors. Org Biomol Chem 9:1356–1365CrossRefGoogle Scholar
  11. Bhuyan BJ, Mugesh G (2012) Antioxidant activity of peptide-based angiotensin converting enzyme inhibitors. Org Biomol Chem 10:2237–2247CrossRefGoogle Scholar
  12. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308CrossRefGoogle Scholar
  13. Braga AL, Ludtke DD, Paixao MW, Alberto EE, Stefani HA, Juliano L (2005) Straightforward synthesis of non-natural selenium containing amino acid derivatives and peptides. Eur J Org Chem 3:4260–4264CrossRefGoogle Scholar
  14. Casi G, Hilver D (2007) Reinvestigation of a selenopeptide with purportedly high glutathione peroxidase activity. J Biol Chem 282:30518–30522CrossRefGoogle Scholar
  15. Chocat P, Esaki N, Tanaka H, Soda K (1985) Synthesis of l-selenodjenkolate and its degradation with methionine γ-lyase. Anal Biochem 148:485–489CrossRefGoogle Scholar
  16. Flemer S (2011) Selenol protecting groups in organic chemistry: special emphasis on selenocysteine se-protection in solid phase peptide synthesis. Molecules 16:3232–3251CrossRefGoogle Scholar
  17. Flemer S (2014) A comprehensive one-pot synthesis of protected cysteine and selenocysteine SPPS derivatives. Protein Pept Lett 21:1257–1264Google Scholar
  18. Flemer S (2015) Fmoc-Sec (Xan)-OH: synthesis and utility of Fmoc selenocysteine SPPS derivatives with acid-labile sidechain protection. J Pept Sci 21:53–59CrossRefGoogle Scholar
  19. Flohe L, Günzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132–134CrossRefGoogle Scholar
  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam M, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision A.02. Gaussian Inc., WallingfordGoogle Scholar
  21. Gieselman MD, Xie L, van der Donk WA (2001) Synthesis of a selenocysteine-containing peptide by native chemical ligation. Org Lett 3:1331–1334CrossRefGoogle Scholar
  22. Görbitz CH, Levchenko V, Semjonovs J, Sharif MY (2015) Crystal structure of seleno-l-cystine dihydrochloride. Acta Cryst E 71:726–729CrossRefGoogle Scholar
  23. Hondal RJ, Raines RT (2002) Semisynthesis of proteins containing selenocysteine. Methods Enzymol 374:70–83CrossRefGoogle Scholar
  24. Hondal RJ, Nilsson BL, Raines RT (2001) Selenocysteine in native chemical ligation and expressed protein ligation. J Am Chem Soc 123:5140–5141CrossRefGoogle Scholar
  25. Huang X, Liu X, Luo Q, Liu J, Shen J (2011) Artificial selenoenzymes: designed and redesigned. Chem Soc Rev 40:1171–1184CrossRefGoogle Scholar
  26. Huber RE, Criddle RS (1967) Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch Biochem Biophys 122:164–173CrossRefGoogle Scholar
  27. Klayman DL, Griffin TS (1973) Reaction of selenium with sodium borohydride in protic solvents. A facile method for the introduction of selenium into organic molecules. J Am Chem Soc 95:197–199CrossRefGoogle Scholar
  28. Köhrle J (2000) The deiodinase family: selenoenzymes regulating thyroid hormone availability and action. Cell Mol Life Sci 57:1853–1863CrossRefGoogle Scholar
  29. Koide T, Itoh H, Otaka A, Furuya M, Kitajima Y, Fujii N (1993) Synthetic study on selenocystine-containing peptides. Chem Pharm Bull 41:502–506CrossRefGoogle Scholar
  30. Levengood M, van der Donk WA (2007) Dehydroalanine-containing peptides: preparation from phenylselenocysteine and utility in convergent ligation strategies. Nat Protocols 1:3001–3010CrossRefGoogle Scholar
  31. Metanis N, Keinan E, Dawson PE (2001) Synthetic seleno-glutaredoxin 3 analogues are highly reducing oxidoreductases with enhanced catalytic efficiency. J Am Chem Soc 128:16684–16691CrossRefGoogle Scholar
  32. Metanis N, Beld J, Hilvert D (2011) Patai’s chemistry of functional groups. Wiley, New York.  https://doi.org/10.1002/9780470682531.pat0582 Google Scholar
  33. Muller A, Senn H, Bock A (1994) The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: biosynthesis and characterization of (Se) 2-thioredoxin. Biochemistry 33:3404–3412CrossRefGoogle Scholar
  34. Nygard B (1967) Polarography of selenocystine-selenocysteine Ark. Kemi 27:341–361Google Scholar
  35. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, IthacaGoogle Scholar
  36. Rashid NB, Chandrakala RN, Sudhir VS, Chandrasekaran S (2010) Synthesis of unnatural selenocystines and β-aminodiselenides via regioselective ring-opening of sulfamidates using a sequential, one-pot, multistep strategy. J Org Chem 75:2910–2921CrossRefGoogle Scholar
  37. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590CrossRefGoogle Scholar
  38. Shimodaira S, Asano Y, Arai K, Iwaoka M (2017) Selenoglutathione diselenide: unique redox reactions in the GPx-like catalytic cycle and repairing of disulfide bonds in scrambled protein. Biochemistry 56:5644–5653CrossRefGoogle Scholar
  39. Stirling CJM (1979) Leaving groups and nucleofugality in elimination and other organic reactions. Acc Chem Res 12:198–203CrossRefGoogle Scholar
  40. Stocking EM, Schwarz JN, Senn H, Salzmann M, Silks LA (1997) Synthesis of l-selenocystine, l-selenocystine and l-tellurocystine. J Chem Soc Perkin Trans 1:2443–2448CrossRefGoogle Scholar
  41. Sun Y, Li T, Chen H, Zhang K, Zheng K, Mu Y, Yan G, Li W, Shen J, Luo G (2004) Selenium-containing 15-mer peptides with high glutathione peroxidase-like activity. J Biol Chem 279:37235–37240CrossRefGoogle Scholar
  42. Syed R, Wu ZP, Hogle JM, Hilvert D (1993) Crystal structure of selenosubtilisin at 2.0-. ANG. resolution. Biochemistry 32:6157–6164CrossRefGoogle Scholar
  43. Takei T, Urabe Y, Asahina Y, Hojo H, Nomura T, Dedachi K, Arai K, Iwaoka M (2014) Model study using designed selenopeptides on the importance of the catalytic triad for the antioxidative functions of glutathione peroxidase. J Phys Chem B 118:492–500CrossRefGoogle Scholar
  44. Tamura T, Oikawa T, Ohtaka A, Fujii N, Esaki N, Soda K (1993) Synthesis and characterization of the selenium analog of glutathione disulfide. Anal Biochem 208:151–154CrossRefGoogle Scholar
  45. Tamura T, Gladyshev V, Liu SY, Stadtman TC (1995) The mutual sparing effects of selenium and vitamin E in animal nutrition may be further explained by the discovery that mammalian thioredoxin reductase is a selenoenzyme. BioFactors 5:99–102Google Scholar
  46. Tan KS, Arnold AP, Rabenstein DL (1988) Selenium-77 nuclear magnetic resonance studies of selenols, diselenides, and selenenyl sulphides. Can J Chem 66:54–60CrossRefGoogle Scholar
  47. Theodoropoulos D, Schwartz L, Walter R (1967) Synthesis of selenium-containing peptides. Biochemistry 6:3927–3932CrossRefGoogle Scholar
  48. Walter R, du Vigneaud V (1965) 6-Hemi-l-selenocystine-oxytocin and 1-deamino-6-hemi-l-selenocystine-oxytocin, highly potent isologs of oxytocin and 1-deamino-oxytocin. J Am Chem Soc 87:4192–4193CrossRefGoogle Scholar
  49. Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 388:997–1006CrossRefGoogle Scholar
  50. Wu ZP, Hilvert D (1989) Conversion of a protease into an acyl transferase: selenolsubtilisin. J Am Chem Soc 111:4513–4514CrossRefGoogle Scholar
  51. Yamashita K, Inoue K, Kinoshita K, Ueda Y, Murao H (2001) Processes for producing β-halogeno-α-amino-carboxylic acids and phenylcysteine derivatives and intermediates thereof. US 20020103399 A1, U.S. Pat. Appl. Publ. 1-14. CN1283178AGoogle Scholar
  52. Yoshida S, Kumakura F, Komatsu I, Arai K, Onuma Y, Hojo H, Singh BG, Indira Priyadarsini K, Iwaoka M (2011) Antioxidative glutathione peroxidase activity of selenoglutathione. Angew Chem Int Ed 50:2125–2128CrossRefGoogle Scholar
  53. Zhu F, O’Neill S, Rodriguez J, Walczak MA (2018) Stereoretentive reactions at the anomeric position: synthesis of selenoglycosides. Angew Chem Int Ed 130:7091–7095CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology BombayMumbaiIndia
  2. 2.Department of ChemistryPurdue UniversityWest LafayetteUSA
  3. 3.Department of ChemistryHoward UniversityWashingtonUSA

Personalised recommendations