Amino Acids

, Volume 50, Issue 11, pp 1557–1571 | Cite as

Membrane affinity and fluorescent labelling: comparative study of monolayer interaction, cellular uptake and cytotoxicity profile of carboxyfluorescein-conjugated cationic peptides

  • Éva KissEmail author
  • Gergő Gyulai
  • Edit Pári
  • Kata Horváti
  • Szilvia Bősze
Original Article


Fluorescent labelling is a common approach to reveal the molecular details of cellular uptake, internalisation, transport, distribution processes in biological systems. The conjugation with a fluorescent moiety might affect relevant physico-chemical and in vitro transport properties of the bioactive component. A representative set of seven cationic peptides—including cell-penetrating peptides as well as antimicrobial peptides and synthetic derivatives—was selected for our comparative study. Membrane affinity of the peptides and their 5(6)-carboxyfluorescein (Cf) derivatives was determined quantitatively and compared applying Langmuir monolayer of zwitterionic (DPPC) and negatively charged (DPPC + DPPG) lipids as cell membrane models. The interaction with neutral lipid layer is mainly governed by the overall hydrophobicity of the molecule which is remarkably increased by Cf-conjugation for the most hydrophobic Magainin, Melittin and Transportan. A significantly enhanced membrane affinity was detected in negatively charged lipid model monolayer for all of the peptides since the combination of electrostatic and hydrophobic interaction is active in that case. The Cf-conjugation improved the penetration ability of Penetratin and Dhvar4 suggesting that both the highly charged character (Z/n) and the increased hydrophobicity by Cf-conjugation present important contribution to membrane interaction. This effect might also responsible for the observed high in vitro internalisation rate of Penetratin and Dhvar4, while according to in vitro studies they did not cause damage of cell membrane. From the experiments with the given seven cationic peptides, it can be concluded that the Cf-conjugation alters the degree of membrane interaction of such peptides which are moderately hydrophobic and highly charged.


Fluorescent labelling Membrane affinity Cell-penetrating peptides Lipid monolayer Penetration Cellular uptake 



Valuable assistance of Mrs. I. Hórvölgyi and H. Szatmári in Langmuir experiments is acknowledged. This work was financially supported by National Research Development and Innovation Office, Hungary (OTKA 104275, 115431, 124077) and VEKOP-2.3.2-16-2017-00014 European Union and the State of Hungary, co-financed by the European Regional Development Fund. K. Horváti was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. G. Gyulai was supported by the Hungarian Academy of Sciences Postdoctoral Research Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Ábrahám Á, Baranyai Z, Gyulai G, Pári E, Horváti K, Bősze S, Kiss É (2016) Comparative analysis of new antitubercular drug peptide conjugates—model membrane and in vitro studies. Colloid Surf B 147:106–115. CrossRefGoogle Scholar
  2. Ábrahám Á, Katona M, Kasza G, Kiss É (2017) Amphiphilic polymer layer—cell membrane interaction studied by QCM and AFM in model systems. Eur Polym J 93C:212–221. CrossRefGoogle Scholar
  3. Alhakamy NA, Kaviratna A, Berkland CJ, Dhar P (2013) Dynamic measurements of membrane insertion potential of synthetic cell penetrating peptides. Langmuir 29:15336–15349. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Almeida PF, Pokorny A (2009) Mechanism of antimicrobial, cytolytic and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 48:8083–8093. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Asthana N, Yadav SP, Ghosh JK (2004) Dissection of antibacterial and toxic activity of melittin. J Biol Chem 279(53):55042–55050. CrossRefPubMedGoogle Scholar
  6. Avitabile C, D’Andrea LD, Romanelli A (2014) Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci Rep 4:4293. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baranyai Z, Krátký M, Vosátka R, Szabó E, Senoner Z, Dávid S, Stolaříková J, Vinšová J, Bősze S (2017) In vitro biological evaluation of new antimycobacterial salicylanilide-tuftsin conjugates. Eur J Med Chem 133:152–173. CrossRefPubMedGoogle Scholar
  8. Bellet-Amalric E, Blaudez D, Desbat B, Graner F, Gauthier F, Renault A (2000) Interaction of the third helix of Antennapedia homeodomain and a phospholipid monolayer, studied by ellipsometry and PM-IRRAS at the air–water interface. Biochim Biophys Acta 1467:131–143. CrossRefPubMedGoogle Scholar
  9. Birch D, Christensen MV, Staerk D, Franzyk H, Nielsen HM (2017) Fluorophore labeling of a cell-penetrating peptide induces differential effects on its cellular distribution and affects cell viability. BBA Biomembr 1859:2483–2494. CrossRefGoogle Scholar
  10. Brezesinski G, Möhwald H (2003) Langmuir monolayers to study interactions at model membrane surfaces. Adv Colloid Interface Sci 100:563–584. CrossRefPubMedGoogle Scholar
  11. Brockman H (1999) Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Curr Opin Struct Biol 9:438–443. CrossRefPubMedGoogle Scholar
  12. Castanho MARB (ed) (2009) Membrane-active peptides: methods and results on structure and function. IUL biotechnology series. International University Line, La Jolla. ISBN 978-0972077453Google Scholar
  13. Christiaens B, Symoens S, Verheyden S, Engelborghs Y, Joliot A, Prochiantz A, Vandekerckhove J, Rosseneu M, Vanloo B, Vanderheyden S (2002) Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes. Eur J Biochem 269:2918–2926. CrossRefPubMedGoogle Scholar
  14. Cranfield CG, Henriques ST, Martinac B, Duckworth PA, Craik DJ, Cornell B (2017) Kalata B1 and Kalata B2 have a surfactant-like activity in phosphatidyletha****nolamine containing lipid membranes. Langmuir 33:6630–6637. CrossRefPubMedGoogle Scholar
  15. Erl W, Weber C, Wardemann C, Weber PC (1995) Adhesion properties of Mono Mac 6, a monocytic cell line with characteristics of mature human monocytes. Atherosclerosis 113:99–107. CrossRefPubMedGoogle Scholar
  16. Flasinski M, Hac-Wydro K, Wydro P, Dynarowicz-Łatka P (2014) Influence of platelet-activating factor, lyso-platelet-activating factor and edelfosine on Langmuir monolayers imitating plasma membranes of cell lines differing in susceptibility to anti-cancer treatment: the effect of plasmalogen level. J R Soc Interface 11:20131103. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Guo Z, Peng H, Kang J, Sun D (2016) Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Rep 4:528–534. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Haedicke A, Blume A (2015) Binding of short cationic peptides (KX)4K to negatively charged DPPG monolayers: competition between electrostatic and hydrophobic interactions. Langmuir 31:12203–12214. CrossRefGoogle Scholar
  19. Hedegaard SF, Derbas MS, Lind TK, Kasimova MR, Christensen MV, Michaelsen MH, Campbell RA, Jorgensen L, Franzyk H, Cárdenas M, Nielsen HM (2018) Fluorophore labeling of a cell-penetrating peptide significantly alters the mode and degree of biomembrane interaction. Sci Rep 8(1):6327. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hegedüs R, Manea M, Orbán E, Szabó I, Kiss É, Sipos É, Halmos G, Mező G (2012) Enhanced cellular uptake and in vitro antitumor activity of short-chain fatty acid acylated daunorubicin-GnRH-III bioconjugates. Eur J Med Chem 56:155–165. CrossRefPubMedGoogle Scholar
  21. Henriques ST, Melo MN, Castanho MARB (2006) Cell-penetrating peptides and antimicrobial peptides: how different are they? Biochem J 99:1–7. CrossRefGoogle Scholar
  22. Hill K, Pénzes CB, Schnöller D, Horváti K, Bősze S, Hudecz F, Keszthelyi T, Kiss É (2010) Characterization of the membrane affinity of an isoniazid peptide-conjugate by tensiometry, atomic force microscopy and sum-frequency vibrational spectroscopy, using a phospholipid Langmuir monolayer model. Phys Chem Chem Phys 12:11498–11506. CrossRefPubMedGoogle Scholar
  23. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828. CrossRefPubMedGoogle Scholar
  24. Horvath R, Kobzi B, Keul H, Möller M, Kiss É (2013) Molecular interaction of a new antibacterial polymer with a supported lipid bilayer measured by an in situ label-free optical technique. Int J Mol Sci 14:9722–9736. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Horváti K, Bacsa B, Kiss E, Gyulai G, Fodor K, Balka G, Rusvai M, Szabó E, Hudecz F, Bősze S (2014) Nanoparticle encapsulated lipopeptide conjugate of antitubercular drug isoniazid: in vitro intracellular activity and in vivo efficacy in a Guinea pig model of tuberculosis. Bioconjug Chem 12:2260–2268. CrossRefGoogle Scholar
  26. Horváti K, Bacsa B, Mlinkó T, Szabó N, Hudecz F, Zsila F, Bősze S (2017) Comparative analysis of internalization, haemolytic, cytotoxic and antibacterial effect of membrane-active cationic peptides: aspects of experimental setup. Amino Acids 49:1053–1067. CrossRefPubMedGoogle Scholar
  27. Horváti K, Gyulai G, Csámpai A, Rohonczy J, Kiss É, Bősze S (2018) Surface layer modification of poly(d,l-lactic-co-glycolic acid) nanoparticles with targeting peptide: a convenient synthetic route for pluronic F127-tuftsin conjugate. Bioconjug Chem 5:1495–1499. CrossRefGoogle Scholar
  28. Hristova K, White SH (2005) An experiment-based algorithm for predicting the partitioning of unfolded peptides into phosphatidylcholine bilayer interfaces. Biochemistry 44:12614–12619. CrossRefPubMedGoogle Scholar
  29. Illien F, Rodriguez N, Amoura M, Joliot A, Pallerla M, Cribier S, Burlina F, Sagan S (2016) Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry. Sci Rep 6:36938. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jensen EC (2012) Use of fluorescent probes: their effect on cell biology and limitations. Anat Rec 295:2031–2036. CrossRefGoogle Scholar
  31. Kapus A, Grinstein S, Wasan S, Kandasamy R, Orlowski J (1994) Functional characterization of three isoforms of the Na+/H+ exchanger stably expressed in Chinese hamster ovary cells. ATP dependence, osmotic sensitivity, and role in cell proliferation. J Biol Chem 269:23544–23552 (PMID: 8089122) PubMedGoogle Scholar
  32. Keszthelyi T, Hill K, Kiss É (2013) Interaction of phospholipid Langmuir monolayers with an antibiotic peptide conjugate. J Phys Chem B 117:6969–6979. CrossRefPubMedGoogle Scholar
  33. Kiss É, Heine ET, Hill K, He Y-C, Keusgen N, Pénzes CB, Schnöller D, Gyulai G, Mendrek A, Keul H, Moeller M (2012) Membrane affinity and antimicrobial properties of polyelectrolytes with different hydrophobicity. Macromol Biosci 12:1181–1189. CrossRefPubMedGoogle Scholar
  34. Kitchens KM, Kolhatkar RB, Swaan PW, Eddington ND, Ghandhari H (2006) Transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm Res 23:2818–2826. CrossRefPubMedGoogle Scholar
  35. Ladokhin AS, White SH (1999) Folding of amphipathic α-helices on membranes: energetics of helix formation by melittin. J Mol Biol 285:1363–1369. CrossRefPubMedGoogle Scholar
  36. Lindberg M, Jarvet J, Langel Ü, Gräslund A (2001) Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR. Biochemistry 40:3141–3149. CrossRefPubMedGoogle Scholar
  37. Liu X, Peng J, He J, Li Q, Zhou J, Liang X, Tang S (2018) Selection and identification of novel peptides specifically targeting human cervical cancer. Amino Acids 50:577–592. CrossRefPubMedGoogle Scholar
  38. Lohr M, Bernier SC, Horchani H, Bussières S, Cantin L, Desbat B, Salesse C (2014) Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Adv Colloid Interface Sci 207:223–239. CrossRefGoogle Scholar
  39. Madani F, Lindberg S, Langel Ü, Futaki S, Gräslund A (2011) Review article: mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011:414729. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Marek T, Szeles C, Süvegh K, Kiss É, Vértes A, Lynn KG (1999) Characterisation of arachidate Langmuir–Blodgett films by variable-energy positron beams. Langmuir 15:8189–8196. CrossRefGoogle Scholar
  41. Michanek A, Yanez M, Wacklin H, Hughes A, Nylander T, Sparr E (2012) RNA and DNA association to zwitterionic and charged monolayers at the air–liquid interface. Langmuir 28:9621–9633. CrossRefPubMedGoogle Scholar
  42. Mohai M, Kiss É, Tóth A, Szalma J, Bertóti I (2002) Preparation and characterization of Langmuir–Blodgett type arachidate films. Surf Interface Anal 34:772–776. CrossRefGoogle Scholar
  43. Nikawa H, Fukushima H, Makihira S, Hamada T, Samaranayake LP (2004) Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Oral Dis 10:221–228. CrossRefPubMedGoogle Scholar
  44. Pénzes CB, Schnöller D, Horváti K, Bősze S, Mező G, Kiss É (2012) Membrane affinity of antituberculotic drug conjugate using lipid monolayer containing mycolic acid. Colloid Surf A 413:142–148. CrossRefGoogle Scholar
  45. PEP-FOLD server, Paris Diderot University (FR) (2018) De novo peptide structure prediction [Internet]. Accessed 10 June 2018
  46. Reissmann S (2014) Cell penetration: scope and limitations by the application of cell-penetrating peptides. J Pept Sci 20:760–784. CrossRefPubMedGoogle Scholar
  47. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738. CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schöne A-C, Roch T, Schulz B, Lendlein A (2017) Evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer techniques. J R Soc Interface 14:20161028. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shen Y, Maupetit J, Derreumaux P, Tufféry P (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput 10:4745–4758. CrossRefPubMedGoogle Scholar
  50. Thévenet P, Shen Y, Maupetit J, Guyon F, Derreumaux P, Tufféry P (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40:W288–W293. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Weingart CL, Broitman-Maduro G, Dean G, Newman S, Peppler M, Weiss AA (1999) Fluorescent labels influence phagocytosis of Bordetella pertussis by human neutrophils. Infect Immun 67:4264–4267 (PMID: 10417202) PubMedPubMedCentralGoogle Scholar
  52. White SH, Wimley WC (1998) Hydrophobic interactions of peptides with membrane interfaces. Biochim Biophys Acta 1376:339–352. CrossRefPubMedGoogle Scholar
  53. Więcek A, Dynarowicz-Łątka P, Miñones J, Conde O, Casas M (2008) Interactions between an anticancer drug—edelfosine—and cholesterol in Langmuir monolayers. Thin Solid Films 516:8829–8833. CrossRefGoogle Scholar
  54. Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinform 9:40. CrossRefGoogle Scholar
  55. Zhang Lab, University of Michigan (2018) I-TASSER Protein Structure and Function Predictions [Internet]. Accessed 10 June 2018
  56. Ziegler A (2008) Thermodynamic studies and binding mechanisms of cell penetrating peptides with lipids and glycosaminoglycans. Adv Drug Deliv Rev 60:580–597. CrossRefPubMedGoogle Scholar
  57. Ziegler-Heitbroc HW, Thiel E, Futterer A, Herzog V, Wirtz A, Riethmuller G (1988) Establishment of a human cell line (MonoMac6) with characteristics of mature monocytes. Int J Cancer 41:456–461. CrossRefGoogle Scholar
  58. Zorko M, Langel Ü (2005) Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev 57(4):529–545. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Interfaces and Nanostructures, Institute of ChemistryEötvös Loránd UniversityBudapestHungary
  2. 2.MTA-ELTE Research Group of Peptide ChemistryBudapestHungary
  3. 3.Institute of ChemistryEötvös Loránd UniversityBudapestHungary

Personalised recommendations