EPR and Mössbauer Characteristics of Aqueous Solutions of 57Fe-Dinitrosyl Iron Complexes with Glutathione and Hydroxyl Ligands

  • Valery E. Prusakov
  • Yury V. Maksimov
  • Dosymzhan Sh. Burbaev
  • Vladimir A. Serezhenkov
  • Rostislav R. Borodulin
  • Nikolay A. Tkachev
  • Vasak D. Mikoyan
  • Anatoly F. VaninEmail author
Original Paper


Our electron paramagnetic resonance (EPR) studies have demonstrated that at 293 K and 77 K, the spin–lattice relaxation time, T1, of paramagnetic mononuclear dinitrosyl iron complexes (M-DNICs) with glutathione and hydroxyl ligands containing isotopes 57Fe and 56Fe notably exceeds the halflife of the Mössbauer transition, i.e., the lifetime of the 57Fe nucleus in the first excited state (10−7 s). The Mössbauer spectra of M-DNIC with hydroxyl ligands, binuclear DNIC with glutathione (B-DNIC) and sodium dithionite-treated solution of B-DNIC with glutathione did not display the presence of the magnetic hyperfine structure (MHFS) characteristic of M-DNIC with glutathione. The Mössbauer spectra of all these DNICs were characterized by quadrupole splitting. The results of a comprehensive comparative analysis of MHFS of M-DNIC with glutathione and that in DMF reduced sodium nitroprusside suggest that M-DNIC with glutathione have a low-spin (S = ½) d7 electronic configuration with the predominant localization of the unpaired electron on the d z 2 orbital of iron. This conclusion is fully consistent with the results of our previous studies of M-DNIC using the EPR method.



This work has been carried out in the framework of the State Programs of the Russian Federal Agency for Scientific Organizations (0082-2014-0001, No. AAAA-A17-117040610310-6 and 0082-2014-0008, No. AAAA-A17-117040310008-5). This work was also supported into framework of the state task for ICP RAS 0082-2014-0008, No AAAA-A17-117040310008-5. The study was sponsored by Russian academic excellence project “5-100” and supported by the Russian Foundation for Basic Research (Grant No. 18-04-00059a).


  1. 1.
    A.F. Vanin, Nitric Oxide Biol. Chem. 21, 1–13 (2009)CrossRefGoogle Scholar
  2. 2.
    A.F. Vanin, Open Conf. Proc. J. 4, 31–37 (2013)CrossRefGoogle Scholar
  3. 3.
    A.F. Vanin, I.V. Malenkova, V.A. Serezhenkov, Nitric Oxide Biol. Chem. 1, 191–203 (1997)CrossRefGoogle Scholar
  4. 4.
    A.F. Vanin, A.P. Poltorakov, V.D. Mikoyan, L.N. Kubrina, D.S. Burbaev, Nitric Oxide Biol. Chem. 23, 1236–1249 (2010)Google Scholar
  5. 5.
    R.R. Borodulin, L.N. Kubrina, V.D. Mikoyan, A.P. Poltorakov, V.O. Shvidkiy, D.S. Burbaev, V.A. Serezhenkov, E.R. Yakhontova, A.F. Vanin, Nitric Oxide Biol. Chem. 29, 4–16 (2013)CrossRefGoogle Scholar
  6. 6.
    A.F. Vanin, D.S. Burbaev, Biophys. J. 14, 878236 (2011)Google Scholar
  7. 7.
    J.H. Enemark, R.D. Feltham, Coord. Chem. Rev. 13, 339–409 (1974)CrossRefGoogle Scholar
  8. 8.
    D.S. Burbaev, Ph.D. Thesis, Moscow State University, Moscow, USSR (1971)Google Scholar
  9. 9.
    D.S. Burbaev, A.F. Vanin, Doklady Akademii Nauk SSSR (Rus) 213, 860–862 (1973)Google Scholar
  10. 10.
    R.R. Borodulin, I.A. Dereven'kov, S.V. Makarov, V.D. Mikoyan, V.A. Serezhenkov, L.N. Kubrina, I. Ivanovic-Burmazovic, A.F. Vanin, Nitric Oxide Biol. Chem. 40, 100–109 (2013)CrossRefGoogle Scholar
  11. 11.
    W.T. Oosterhuis, G. Lang, J. Chem. Phys. 50, 4381–4386 (1969)ADSCrossRefGoogle Scholar
  12. 12.
    J.D.W. van Voorst, P. Hemmerich, J. Chem. Phys. 45, 3914–3918 (1966)ADSCrossRefGoogle Scholar
  13. 13.
    J. Schmidt, M. Kühr, W.L. Dorn, J. Kopf, Inorg. Nucl. Chem. Lett. 10, 55–56 (1974)CrossRefGoogle Scholar
  14. 14.
    A.M. Afanasjev, Yu. Kogan, Zh. Eksp. Teor. Fiziki (Rus) 45, 1660–1671 (1963)Google Scholar
  15. 15.
    H.A.O. Hill, P. Day (eds.), Physical Methods in Advanced Inorganic Chemistry (University Press, Cambridge, 1968)Google Scholar
  16. 16.
    A.F. Vanin, R.A. Stukan, E.B. Manukhina, Biochim. Biophys. Acta. 1295, 5–12 (1995)CrossRefGoogle Scholar
  17. 17.
    G. Lang, W.T. Oosterhuis, J. Chem. Phys. 51, 3608–3614 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    G.K. Wertheim, Mössbauer effect, Principles and Applications (Academic Press, New York and London, 1964) Translation into Russian, (MIR, Moscow, pp. 113–127, 1966)Google Scholar
  19. 19.
    C.E. Johnson, R. Richards, H.O.A. Hill, J. Chem. Phys. 50, 2594–2597 (1969)ADSCrossRefGoogle Scholar
  20. 20.
    R.R. Borodulin, L.N. Kubrina, V.O. Shvydkiy, V.L. Lakomkin, A.F. Vanin, Nitric Oxide Biol. Chem. 35, 110–115 (2013)CrossRefGoogle Scholar
  21. 21.
    K.M. Salikhov, A.B. Doktorov, Yu.N. Molin, K.I. Zamaraev, J. Magn. Reson. 5, 189–205 (1971)ADSGoogle Scholar
  22. 22.
    A. Carrington, A.D. MacLachlan, Introduction to Magnetic Resonance with Application to Chemistry and Chemical Physics (Happer & Row Publishers, New York, Evanston and London, 1967)Google Scholar
  23. 23.
    C.P. Poole, Electron Spin Resonance. Comprehensive Treatise on Experimental Techniques (Enterscience Publishers, New York, London, Sydney, 1967)Google Scholar
  24. 24.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendor Press, Oxford, 1970)Google Scholar
  25. 25.
    A.F. Vanin, V.D. Mikoyan, R.R. Borodulin, D.S. Burbaev, L.N. Kubrina, Appl. Magn. Reson. 47, 277–295 (2016)CrossRefGoogle Scholar
  26. 26.
    B.R. Garvey, Can. J. Chem. 53, 2498–2511 (1975)CrossRefGoogle Scholar
  27. 27.
    H.B. Gray, Electrons and Chemical Binding (W.A. Benjamin Inc, Amsterdam, 1965)Google Scholar
  28. 28.
    T.B. Bryar, D.R. Eaton, Can. J. Chem. 70, 1917–1926 (1992)CrossRefGoogle Scholar
  29. 29.
    R. Garsia Serres, C.A. Grapperhaus, E. Bothe, E. Bill, T. Weyhermüller, F. Neese, K. Wieghard, J. Am. Chem. Soc. 126, 5138–5153 (2004)CrossRefGoogle Scholar
  30. 30.
    C.-Y. Chiang, M.L. Miller, J.H. Reibenspies, M.Y. Darensbourg, J. Am. Chem. Soc. 126, 10867–10874 (2004)CrossRefGoogle Scholar
  31. 31.
    B.A. Goodman, J.B. Raynor, M.C.R. Symons, J. Chem. Soc. A. 2572–2575 (1969)Google Scholar
  32. 32.
    N.S. Garivyanov, S.A. Luchkina, Doklady Akademii Nauk SSSR (Rus) 189, 779–782 (1969)Google Scholar
  33. 33.
    A.F. Vanin, N.A. Sanina, V.A. Serezhenkov, D.S. Burbaev, V.I. Lozinsky, S.M. Aldoshin, Nitric Oxide Biol. Chem. 16, 82–93 (2007)CrossRefGoogle Scholar
  34. 34.
    Z.J. Tonzetich, L.H. Do, S.J. Lippard, J. Am. Chem. Soc. 131, 7964–7965 (2009)CrossRefGoogle Scholar
  35. 35.
    M.-C. Tsai, F.-T. Tsai, T.-T. Lu, M.-L. Tsai, Y.-C. Wey, I.-H. Hsu, J.-F. Lee, W.-F. Liaw, Inorg. Chem. 48, 9579–9591 (2009)CrossRefGoogle Scholar
  36. 36.
    N.A. Sanina, S.M. Aldoshin, N.Yu. Shmatko, D.V. Korchagin, G.V. Shilov, N.S. Ovanesyan, A.V. Kulikov, Inorg. Chem. Comun. 49, 44–47 (2014)CrossRefGoogle Scholar
  37. 37.
    S. Ye, F. Neese, J. Am. Chem. Soc. 132, 3646–3647 (2010)CrossRefGoogle Scholar
  38. 38.
    C.E. Tinberg, Z. Tonzetich, H. Wang, L.H. Do, Y. Yoda, S.P. Cramer, S.L. Lippard, J. Am. Chem. Soc. 132, 18168–18176 (2010)CrossRefGoogle Scholar
  39. 39.
    H. Oda, H. Nogami, T. Nakajima, J. Toxicol. Environ. Health 6, 673–678 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Valery E. Prusakov
    • 1
  • Yury V. Maksimov
    • 1
  • Dosymzhan Sh. Burbaev
    • 1
  • Vladimir A. Serezhenkov
    • 1
  • Rostislav R. Borodulin
    • 1
  • Nikolay A. Tkachev
    • 1
  • Vasak D. Mikoyan
    • 1
  • Anatoly F. Vanin
    • 1
    • 2
    Email author
  1. 1.N. N. Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Regenerative MedicineI. M. Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations