Hydration and Water Molecules Mobility in Acid Form of Nafion Membrane Studied by 1H NMR Techniques

  • Alexander V. Chernyak
  • Sergey G. Vasiliev
  • Irina A. Avilova
  • Vitaly I. VolkovEmail author
Original Paper


Hydration of perfluorinated sulfonic cation-exchange membrane Nafion 117 in acidic ionic form was investigated. It was shown that cation H+ is coupled with two water molecules and hydroxonium ion H5O2+ at low water content is formed. The main feature of the temperature dependence of the self-diffusion coefficients is the increasing curve slopes in low-temperature regions. At high humidity activation energies do not depend on the water content above 0 °C and are close to the bulk water activation energy. The changes in slopes of self-diffusion coefficients and proton conductivity temperature dependencies are usually explained by the freezing of free water at temperatures below 0 °C. This explanation contradicts the temperature dependence of the amount of mobile water. Water does not freeze till λ = 9–10 (λ is the number of water molecules per sulfonate group), but, anyway, ice-like phase DSC peak is observed at λ ≤ 9. From analysis of the 1H NMR relaxation time temperature dependences, it was proposed that at the temperatures below 0 °C water molecules are associated, but are not able to form ice phase because part of their hydrogen bonds are occupied by sulfonate group oxygen and H+ cation. The mobility of these associates is rather high at negative temperatures; however, these associates show a DSC peak.



This work was supported by Russian Foundation for Basic Research (project no. 18-08-00423 A).


  1. 1.
    J.C. Hindman, J. Chem. Phys. 36, 1000 (1962)ADSCrossRefGoogle Scholar
  2. 2.
    P.S. Knapp, R.O. Waite, E.R. Malinowski, J. Chem. Phys. 49, 5459 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    R.W. Creekmore, C.N. Reilley, J. Chem. Phys. 73, 1563 (1969)CrossRefGoogle Scholar
  4. 4.
    E.R. Malinowski, P.S. Knapp, B. Feuer, J. Chem. Phys. 45, 4274 (1966)ADSCrossRefGoogle Scholar
  5. 5.
    R.W. Creekmore, C.N. Reilley, Anal. Chem. 42, 570 (1970)CrossRefGoogle Scholar
  6. 6.
    T.E. Gough, H.D. Sharma, N. Subramanian, Can. J. Chem. 48, 917 (1970)CrossRefGoogle Scholar
  7. 7.
    V.G. Khutsishvili, Yu.S. Bogachev, V.I. Volkov, A.I. Serebryanskaya, N.N. Shapet’ko, S.F. Timashev, M.L. Orman, Russ. J. Phys. Chem. 57, 2524 (1983). (in Russian) Google Scholar
  8. 8.
    V.I. Volkov, G.K. Saldadze, R.I. Tagirova, L.V. Kropotov, V.G. Khutsishvili, N.N. Shapet’ko, Russ. J. Phys. Chem. 64, 1005 (1989). (in Russian) Google Scholar
  9. 9.
    G.K. Saldadze, R.I. Tagirova, V.I. Volkov, S.A. Chizhanov, Russ. J. Phys. Chem. 67, 1818 (1993). (in Russian) Google Scholar
  10. 10.
    R. Iwamoto, K. Oguro, M. Sato, Y. Iseki, Russ. J. Phys. Chem. B 106, 6973 (2002)CrossRefGoogle Scholar
  11. 11.
    L. Maldonado, J.-C. Perrin, J. Dillet, O. Lottin, J. Membr. Sci. 389, 43 (2012)CrossRefGoogle Scholar
  12. 12.
    S.-Y. Jeong, O.-H. Han, Bull. Korean Chem. Soc. 30, 1559 (2009)CrossRefGoogle Scholar
  13. 13.
    A. Guillermo, G. Gebel, H. Mendil-Jakani, E. Pinton, J. Phys. Chem. B 113, 6710 (2009)CrossRefGoogle Scholar
  14. 14.
    Z. Ma, R. Jiang, M.E. Myers, E.L. Thompson, C.S. Gittleman, J. Mater. Chem. 21, 9302 (2011)CrossRefGoogle Scholar
  15. 15.
    P. Batamack, J. Fraissard, Catal. Lett. 49, 129 (1997)CrossRefGoogle Scholar
  16. 16.
    N.J. Bunce, S.J. Sondheimer, C.A. Fyfe, Macromolecules 19, 333 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    V.G. Khutsishvili, Yu.S. Bogachev, V.I. Volkov, B.V. Tarasova, N.A. Dreiman, N.N. Shapet’ko, S.F. Timashev, Russ. J. Phys. Chem. 58, 2633 (1984). (in Russian) Google Scholar
  18. 18.
    V.I. Volkov, E.A. Sidorenkova, S.F. Timashev, S.G. Lakeev, Russ. J. Phys. Chem. 67, 914 (1993)Google Scholar
  19. 19.
    V.I. Volkov, A.A. Marinin, Russ. Chem. Rev. 82, 248 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    V.I. Volkov, S.L. Vasilyak, I.-W. Park, H.J. Kim, H. Ju, E.V. Volkov, S.H. Choh, Appl. Magn. Reson. 25, 43 (2003)CrossRefGoogle Scholar
  21. 21.
    B. MacMillan, A.R. Sharp, R.L. Armstrong, Polymer 40, 2481 (1999)CrossRefGoogle Scholar
  22. 22.
    N.G. Boyle, J.M.D. Coey, V.J. McBrierty, Chem. Phys. Lett. 86, 16 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    A. Kusoglu, A.Z. Weber, Chem. Rev. 117, 987 (2017)CrossRefGoogle Scholar
  24. 24.
    Q. Zhao, P. Majsztrik, J. Benziger, J. Phys. Chem. B 115, 2717 (2011)CrossRefGoogle Scholar
  25. 25.
    T.A. Zawodzinski, C. Derouin, S. Radzinski, R.J. Sherman, V.T. Smith, T.E. Springer, S. Gottesfeld, J. Electrochem. Soc. 140, 1041 (1993)CrossRefGoogle Scholar
  26. 26.
    T.A. Zawodzinski, T.E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, S. Gottesfeld, J. Electrochem. Soc. 140, 1981 (1993)CrossRefGoogle Scholar
  27. 27.
    M. Cappadonia, J.W. Erning, S.M.S. Niaki, U. Stimming, Solid State Ionics 77, 65 (1995)CrossRefGoogle Scholar
  28. 28.
    I. Nicotera, L. Coppola, C.O. Rossi, M. Youssry, G.A. Ranieri, J. Phys. Chem. B 113, 13935 (2009)CrossRefGoogle Scholar
  29. 29.
    A.L. Moster, B.S. Mitchell, J. Appl. Polym. Sci. 113, 243 (2009)CrossRefGoogle Scholar
  30. 30.
    E.L. Thompson, T.W. Capehart, T.J. Fuller, J. Jorne, J. Electrochem. Soc. 153, A2351 (2006)CrossRefGoogle Scholar
  31. 31.
    M. Plazanet, F. Sacchetti, C. Petrillo, B. Demé, P. Bartolini, R. Torre, J. Membr. Sci. 453, 419 (2014)CrossRefGoogle Scholar
  32. 32.
    I.A. Avilova, A.V. Smolina, A.I. Kotelnikov, R.A. Kotelnikova, V.V. Loskutov, V.I. Volkov, Appl. Magn. Reson. 47, 335 (2016)CrossRefGoogle Scholar
  33. 33.
    N. Kononenko, V. Nikonenko, D. Grande, C. Larchet, L. Dammak, M. Fomenko, Yu. Volfkovich, Adv. Colloid Interface Sci. 246, 196 (2017)CrossRefGoogle Scholar
  34. 34.
    V.I. Volkov, I.A. Nesterov, S.F. Timashev, V.I. Sundukov, L.V. Kropotov, Russ. J. Chem. Phys. B 8, 128 (1989). (in Russian) Google Scholar
  35. 35.
    N.G. Boyle, V.J. McBrierty, D.C. Douglass, Macromolecules 16, 75 (1983)ADSCrossRefGoogle Scholar
  36. 36.
    H. Pfeiffer, in NMR: Basic Principles and Progress,  vol. 7, ed. by P. Diehl, E. Fluck, R. Kosfeld (Springer, Berlin, 1972) p. 53Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Alexander V. Chernyak
    • 1
    • 2
  • Sergey G. Vasiliev
    • 1
  • Irina A. Avilova
    • 1
  • Vitaly I. Volkov
    • 1
    • 2
    Email author
  1. 1.Institute of Problems of Chemical Physics RASChernogolovkaRussian Federation
  2. 2.Science Center in Chernogolovka RASChernogolovkaRussian Federation

Personalised recommendations