In Situ FMR Study of the Selective H2S-Oxidation Stability of ε-Fe2O3/SiO2 Catalysts

  • S. S. YakushkinEmail author
  • G. A. Bukhtiyarova
  • A. A. Dubrovskiy
  • Yu. V. Knyazev
  • D. A. Balaev
  • O. N. Martyanov
Original Paper


The stability of a catalyst for partial H2S oxidation has been studied by the ferromagnetic resonance (FMR) technique combined with transmission electron microscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetostatic investigations. The ε-Fe2O3 iron oxide nanoparticles supported on silica have been examined for their stability under the selective H2S oxidation conditions. The combination of the physicochemical methods has been used to study the state of reacted catalysts. The ε-Fe2O3 phase has been found to remain stable under the selective H2S oxidation conditions at temperatures up to 300 °C. The active phase state during the catalytic reaction has been explored using in situ FMR experiments. It has been established that the ε-Fe2O3 nanoparticles retain their structure and magnetic properties in the presence of H2S at high temperatures. During the in situ FMR experiments, the ε-Fe2O3 sulfidation process has been studied.



This work was supported by the Russian Science Foundation, project no. 17-12-01111.


  1. 1.
    H. Dong, M. Xie, J. Xu, M. Li, L. Peng, X. Guo, W. Ding, Chem. Commun. 47, 4019 (2011)CrossRefGoogle Scholar
  2. 2.
    S.-H. Kang, J.W. Bae, J.-Y. Cheon, Y.-J. Lee, K.-S. Ha, K.-W. Jun, D.-H. Lee, B.-W. Kim, Appl. Catal. B Environ. 103, 169 (2011)CrossRefGoogle Scholar
  3. 3.
    K. Matsuoka, T. Shimbori, K. Kuramoto, H. Hatano, Y. Suzuki, Energy Fuels 20, 2727 (2006)CrossRefGoogle Scholar
  4. 4.
    A. Schüle, O. Shekhah, W. Ranke, R. Schlögl, G. Kolios, J. Catal. 231, 172 (2005)CrossRefGoogle Scholar
  5. 5.
    F. Gong, T. Ye, L. Yuan, T. Kan, Y. Torimoto, M. Yamamoto, Q. Li, Green Chem. 11, 2001 (2009)CrossRefGoogle Scholar
  6. 6.
    R.J.A.M. Terorde, P.J. Van Den Brink, L.M. Visser, A.J. Van Dillen, J.W. Geus, Geus, Catal. Today Elsevier Sci. Publ. B.V 17, 217 (1993)Google Scholar
  7. 7.
    D. Won Park, S. Woo Chun, J. Yeol Jang, H. Sun Kim, H. Chul Woo, J. Shik Chung, Catal. Today 44, 73 (1998)CrossRefGoogle Scholar
  8. 8.
    Y.-M. Su, C.-Y. Huang, Y.-P. Chyou, K. Svoboda, J. Taiwan Inst. Chem. Eng. 74, 89 (2017)CrossRefGoogle Scholar
  9. 9.
    N. Keller, R. Vieira, J.M. Nhut, C. Pham-Huu, M.J. Ledoux, J. Braz. Chem. Soc. 16, 514 (2005)CrossRefGoogle Scholar
  10. 10.
    M.A. Shuvaeva, I.V. Delii, O.N. Martyanov, O.A. Bayukov, E.I. Osetrov, A.A. Saraev, V.V. Kaichev, N.S. Sakaeva, G.A. Bukhtiyarova, Kinet. Catal. 52, 896 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Wu, Z. Su, H. Fan, J. Mi, Energy Fuels 31, 4263 (2017)CrossRefGoogle Scholar
  12. 12.
    G.A. Bukhtiyarova, I.V. Delii, N.S. Sakaeva, V.V. Kaichev, L.M. Plyasova, V.I. Bukhtiyarov, React. Kinet. Catal. Lett. 92, 89 (2007)CrossRefGoogle Scholar
  13. 13.
    P.J. Van Den Brink, A. Scholten, A.J. Van Dillen, J.W. Geus, E. Boellaard, A.M. Van Der Kraan. Catalyst Deactivation 1991, 1st Edition, pp 825Google Scholar
  14. 14.
    N.S. Sakaeva, V.A. Varnek, G.A. Bukhtiyarova, V.F. Anufrienko, E.A. Sobolev, B.P. Zolotovskii, React. Kinet. Catal. Lett. 70, 169 (2000)CrossRefGoogle Scholar
  15. 15.
    G.A. Bukhtiyarova, V.I. Bukhtiyarov, N.S. Sakaeva, V.V. Kaichev, B.P. Zolotovskii, J. Mol. Catal. A: Chem. 158, 251 (2000)CrossRefGoogle Scholar
  16. 16.
    G.A. Bukhtiyarova, M.A. Shuvaeva, O.A. Bayukov, S.S. Yakushkin, O.N. Martyanov, J. Nanoparticle Res. 13, 5527 (2011)CrossRefADSGoogle Scholar
  17. 17.
    E. Tronc, C. Chanéac, J.P. Jolivet, J. Solid State Chem. 139, 93 (1998)CrossRefADSGoogle Scholar
  18. 18.
    M. Gich, A. Roig, E. Taboada, E. Molins, C. Bonafos, E. Snoeck, Faraday Disc. 136, 345 (2007)CrossRefADSGoogle Scholar
  19. 19.
    M. Gich, A. Roig, C. Frontera, E. Molins, J. Sort, M. Popovici, G. Chouteau, D. Martín y Marero, J. Nogués, J. Appl. Phys. 98, 044307 (2005)CrossRefADSGoogle Scholar
  20. 20.
    J. Jin, S. Ohkoshi, K. Hashimoto, Adv. Mater. 16, 48 (2004)CrossRefGoogle Scholar
  21. 21.
    D.A. Balaev, S.S. Yakushkin, A.A. Dubrovskii, G.A. Bukhtiyarova, K.A. Shaikhutdinov, O.N. Martyanov, Tech. Phys. Lett. 42, 347 (2016)CrossRefADSGoogle Scholar
  22. 22.
    D.A. Balaev, I.S. Poperechny, A.A. Krasikov, K.A. Shaikhutdinov, A.A. Dubrovskiy, S.I. Popkov, A.D. Balaev, S.S. Yakushkin, G.A. Bukhtiyarova, O.N. Martyanov, Y.L. Raikher, J. Appl. Phys. 117, 063908 (2015)CrossRefADSGoogle Scholar
  23. 23.
    S. S. Yakushkin, A. A. Dubrovskiy, D. A. Balaev, K. A. Shaykhutdinov, G. A. Bukhtiyarova, O. N. Martyanov, J. Appl. Phys. 111 (2012)Google Scholar
  24. 24.
    A.A. Dubrovskiy, D.A. Balaev, K.A. Shaykhutdinov, O.A. Bayukov, O.N. Pletnev, S.S. Yakushkin, G.A. Bukhtiyarova, O.N. Martyanov, J. Appl. Phys. 118, 213901 (2015)CrossRefADSGoogle Scholar
  25. 25.
    S.S. Yakushkin, G.A. Bukhtiyarova, O.N. Martyanov, J. Struct. Chem. 54, 876 (2013)CrossRefGoogle Scholar
  26. 26.
    A.A. Gabrienko, A.V. Ewing, A.M. Chibiryaev, A.M. Agafontsev, K.A. Dubkov, S.G. Kazarian, Phys. Chem. Chem. Phys. 18, 6465 (2016)CrossRefGoogle Scholar
  27. 27.
    R. Schlögl, S.B. Abd Hamid, Angew. Chemie Int. Ed. 43, 1628 (2004)CrossRefGoogle Scholar
  28. 28.
    M.P. Felicissimo, O.N. Martyanov, T. Risse, H.J. Freund, Surf. Sci. 601, 2105 (2007)CrossRefADSGoogle Scholar
  29. 29.
    O.N. Martyanov, T. Risse, H.J. Freund, J. Chem. Phys. 129, 114703 (2008)CrossRefADSGoogle Scholar
  30. 30.
    A. Brückner, Chem. Soc. Rev. 39, 4673 (2010)CrossRefGoogle Scholar
  31. 31.
    N.S. Nesterov, I.I. Simentsova, V.F. Yudanov, O.N. Martyanov, J. Struct. Chem. 57, 90 (2016)CrossRefGoogle Scholar
  32. 32.
    J.L. García-Muñoz, A. Romaguera, F. Fauth, J. Nogués, M. Gich, Chem. Mater. 29, 9705 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • S. S. Yakushkin
    • 1
    Email author
  • G. A. Bukhtiyarova
    • 1
  • A. A. Dubrovskiy
    • 2
  • Yu. V. Knyazev
    • 2
  • D. A. Balaev
    • 2
  • O. N. Martyanov
    • 1
  1. 1.Boreskov Institute of Catalysis, Russian Academy of SciencesNovosibirskRussia
  2. 2.Kirensky Institute of PhysicsFederal Research Center KSC SB RASKrasnoyarskRussia

Personalised recommendations