NMR 63.65Cu in a Local Field and Relaxation of Nuclear Spins in a CuFeS2 Magnetic Semiconductor

  • Stanislav O. GarkavyiEmail author
  • Vadim L. Matukhin
  • Ecaterina V. Schmidt
  • Rustem R. Khusnutdinov
  • Georgy V. Mozzhukhin
Original Paper


The results of the study of the spectral and relaxation parameters of 63.65Cu nuclear magnetic resonance (NMR) in a local field in natural samples of the semiconductor mineral chalcopyrite (CuFeS2), which is characterized by a strong interplay of magnetic and electronic properties, are presented. The main attention was paid to the determination of the mechanism of nuclear spin–lattice relaxation. The well-resolved quadrupole structure of the 63.65Cu NMR spectrum allowed us to investigate the kinetics of nuclear magnetization recovery for both Cu isotopes. The magnetic mechanism of the spin–lattice relaxation of the nuclear spins of copper isotopes 63.65Cu in CuFeS2, due to fluctuations of the dipole local fields created by the electron spins of magnetic Fe3+ ions, has been determined.



  1. 1.
    N. Tsujii, T. Mori, Appl. Phys. Express 6(4), 043001 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    G. Donnay, L. Corliss, J.D.H. Donnay, J.M. Hastings, Phys. Rev. 112, 1917–1923 (1958)Google Scholar
  3. 3.
    T. Teranishi, J. Phys. Jpn. 16(7), 1881–1887 (1961)ADSCrossRefGoogle Scholar
  4. 4.
    C. Boekema, A.M. Krupski, M. Varasteh, K. Parvin, F.van Til, F.van der Woude, G.A. Sawatzky. J. Magn. Magn. Mater. 272–276, 559–561 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    T. Mori, Small J. Phys. Conf. Ser. 1052, 012001 (2018)CrossRefGoogle Scholar
  6. 6.
    R.S. Abdullin, V.P. Kal’chev, I.N. Pen’kov, Phys. Chem. Miner. 14(3), 258–263 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    D. Bennett, D. Miljak, B. Schwitter, J. Khachan, in Proceedings of the 34 Annual Condensed Matter and Materials Meeting (Waiheke Island, Auckland, New Zeland, 2–5 February, 2010), p. 59Google Scholar
  8. 8.
    A.I. Pogoreltsev, A.N. Gavrilenko, V.L. Matukhin, B.V. Korzun, E.V. Schmidt, J. Appl. Spectrosc. 80, 362 (2013)CrossRefGoogle Scholar
  9. 9.
    V.V. Ogloblichev, I.G. Sevastyanov, A.N. Gavrilenko, V.L. Matukhin, I.J. Arapova, E.J. Medvedev, S.O. Garkavyi, E.V. Schmidt, J. Appl. Spectrosc. 83, 731 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    V.L. Matukhin, A.I. Pogoreltsev, A.N. Gavrilenko, S.O. Garkavy, E.V. Schmidt, S.F. Babaeva, A.A. Sukhanova, E.I. Terukov, Semiconductors 51, 8 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    V.L. Matukhin, A.I. Pogoreltsev, A.N. Gavrilenko, S.O. Garkavy, E.V. Schmidt, S.F. Babaeva, A.A. Sukhanova, E.I. Terukov, Semiconductors 52, 836 (2018)CrossRefGoogle Scholar
  12. 12.
    C. Hohenemser, N. Rosov, A. Kleinhammes, Hyperfine Interact. 49, 267–324 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V. Frolov, A. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer, Berlin, 2014)CrossRefGoogle Scholar
  14. 14.
    K.E. Sakaie, C.P. Slichter, P. Lin, M. Jaime, M.B. Salamon, Phys. Rev. B 59, 9382 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    N. Noginova, E. Arthur, T. Weaver, G.B. Loutts, V.A. Atsarkin, D.G. Gotovtsev, Phys. Rev. B 69, 024406 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    I.V. Alexandrov, Theory of Magnetic Relaxation in Liquid and Solid Non-Metallic Paramagnets (Nauka, Moscow, 1975) (in Russian) Chapt. 7Google Scholar
  17. 17.
    F.S. Dzheparov, S.V. Stepanov, J.F. Jacquinot, Phys. Atomic Nuclei. 65, 2052–2063 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    G.R. Khutsishvili, Sov. Phys. Usp. 8, 743–769 (1966)ADSCrossRefGoogle Scholar
  19. 19.
    G.R. Khutsishvili, Sov. Phys. Usp. 11, 802–815 (1969)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kazan State Power Engineering UniversityKazanRussia
  2. 2.Department of PhysicsGebze Technical UniversityGebze/KocaeliTurkey

Personalised recommendations