Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 12, pp 1409–1418 | Cite as

51V and 25Mg NMR Study of the Kagome Staircase Compound Mg3V2O8

  • Vasily V. OgloblichevEmail author
  • Konstantin N. Mikhalev
  • Olga N. Leonidova
  • Irina Yu. Arapova
  • Alexander Yu. Germov
Original Paper
  • 48 Downloads

Abstract

The 51V and 25Mg nuclear magnetic resonance (NMR) spectra have been obtained and magnetic susceptibility has been measured in polycrystalline Mg3V2O8. The analysis of 51V NMR spectra has shown that the line shift, δ(51V) = − 555 ppm, does not depend on temperature. It has been established that vanadium ions V5+ have a zero magnetic moment in this structure. The 25Mg NMR spectrum consists of two lines corresponding to two crystallographically nonequivalent positions of magnesium ions in the Kagome structure: Mg(1) are « spine » and Mg(2) are « cross tie » . Quadrupole frequencies and asymmetry parameters of 25Mg and 51V NMR spectra have been determined. The magnetic susceptibility is turn out to be zero (within the error) and remains constant over at a whole temperature range.

Notes

Acknowledgements

The research was carried out within the state assignment of Minobrnauki of Russia (theme “Function” No. AAAA-A19-119012990095-0) and the project of the complex program of Ural Branch of the Russian Academy of Sciences № 18-10-3-32. The authors are grateful to I. A. Leonidov and A. L. Buzlukov for the productive discussion of the results.

References

  1. 1.
    W.D. Harding, H.H. Kung, V.L. Kozhevnikov, K.R. Poeppelmeier, J. Catal. 144, 597 (1993)CrossRefGoogle Scholar
  2. 2.
    S. Slyemi, J. Blanchard, S. Barama, A. Barama, H. Messaoudi, S. Casale, C. Calers, Z. Ihdene, C. R. Chimie 20, 1062 (2017)CrossRefGoogle Scholar
  3. 3.
    L. Balderas-Tapia, I. Hernández-Pérez, P. Schacht, I.R. Córdova, G.G. Aguilar-Ríos, Catal. Today 107–108, 371 (2005)CrossRefGoogle Scholar
  4. 4.
    X. Wang, H. Zhang, W. Sinkler, K.R. Poeppelmeier, L.D. Marks, J. Alloys Comp. 270, 88 (1998)CrossRefGoogle Scholar
  5. 5.
    N. Krishnamachari, C. Calvo, Canad. J. Chem. 49, 1629 (1971)CrossRefGoogle Scholar
  6. 6.
    O.N. Leonidova, A.A. Fotiev, I.A. Leonidov, Inorg. Mater. 28, 1136 (1992)Google Scholar
  7. 7.
    R. Szymczak, M. Baran, R. Diduszko, J. Fink-Finowicki, M. Gutowska, A. Szewczyk, H. Szymczak, Phys. Rev. B 73, 094425 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    G. Lawes, A.B. Harris, T. Kimura, N. Rogado, R.J. Cava, A. Aharony, O. Entin-Wohlman, T. Yildirim, M. Kenzelmann, C. Broholm, A.P. Ramirez, Phys. Rev. Lett. 95, 087205 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    N. Rogado, G. Lawes, D.A. Huse, A.P. Ramirez, R.J. Cava, Solid State Commun. 124, 229 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    G. Lawes, M. Kenzelmann, N. Rogado, K.H. Kim, G.A. Jorge, R.J. Cava, A. Aharony, O. Entin-Wohlman, A.B. Harris, T. Yildirim, Q.Z. Huang, S. Park, C. Broholm, A.P. Ramirez, Phys. Rev. Lett. 93, 247201 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    J.D. Pless, N. Erdman, D. Ko, L.D. Marks, P.C. Stair, K.R. Poeppelmeier, Cryst. Growth Des. 3(4), 615 (2003)CrossRefGoogle Scholar
  12. 12.
    V. Ogloblichev, K. Kumagai, S. Verkhovskii, A. Yakubovsky, K. Mikhalev, Yu. Furukawa, A. Gerashenko, A. Smolnikov, S. Barilo, G. Bychkov, S. Shiryaev, Phys. Rev. B. 81, 144404 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    V. Ogloblichev, K. Kumagai, A. Yakubovskii, K. Mikhalev, Y. Furukawa, S. Verkhovskii, A. Gerashenko, S. Barilo, G. Bychkov, S. Shiryaev, A. Korolev, J. Phys, Conf. Ser. 150, 42148 (2009)CrossRefGoogle Scholar
  14. 14.
    A.G. Smol’nikov, V.V. Ogloblichev, A.F. Sadykov, Y.V. Piskunov, A.P. Gerashchenko, S.V. Verkhovskii, A.Y. Yakubovskii, S.N. Barilo, G.L. Bychkov, S.V. Shiryaev, J. Exp. Theoret. Phys. 112, 1020 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    A.A. Mukhin, V.Y. Ivanov, A.M. Kuzmenko, A.S. Prokhorov, A.A. Pronin, S.N. Barilo, G.L. Bychkov, S.V. Shiryaev, JETP Lett. 91(3), 147 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V. Frolov, A. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer, Berlin, 2014), p. 782CrossRefGoogle Scholar
  17. 17.
    O.B. Lapina, V.M. Mastikhin, A.A. Shubin, V.N. Krasilnikov, K.I. Zamaraev, Prog. NMR Spectrosc. 24, 457 (1992)CrossRefGoogle Scholar
  18. 18.
    S. Sugiyama, Y. Hirata, T. Osaka, T. Moriga, K. Nakagawa, K. Sotowa, J. Ceram. Soc. Jpn. 115(10), 667 (2007)CrossRefGoogle Scholar
  19. 19.
    M.L. Occelli, R.S. Maxwell, H. Eckert, J. Catal. 137, 36 (1992)CrossRefGoogle Scholar
  20. 20.
    E.F. Aboelfetoh, M. Fechtelkord, R. Pietschnig, J. Mol. Catal. A: Chem. 318, 51 (2010)CrossRefGoogle Scholar
  21. 21.
    O.B. Lapina, A.V. Simakov, V.M. Mastikhin, S.A. Veniaminov, A.A. Shubin, J. Mol. Catal. 50, 55 (1989)CrossRefGoogle Scholar
  22. 22.
    D.S.H. Sam, V. Soenen, J.C. Volta, J. Catal. 123, 417 (1990)CrossRefGoogle Scholar
  23. 23.
    J. Rodríguez-Carvajal, Phys. B 192, 55 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    A.G. Smol’nikov, V.V. Ogloblichev, S.V. Verkhovskii, K.N. Mikhalev, A.Y. Yakubovskii, Y. Furukawa, Y.V. Piskunov, A.F. Sadykov, S.N. Barilo, S.V. Shiryaev, Phys. Metals Metallogr. 118, 134 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    A.F. Sadykov, A.P. Gerashchenko, Y.V. Piskunov, V.V. Ogloblichev, A.G. Smol’nikov, S.V. Verkhovskii, A.Y. Yakubovskii, E.A. Tishchenko, A.A. Bush, J. Exp. Theoret. Phys. 115, 666 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J.-O. Durand, B. Bujoli, Zh Gan, G. Hoatson, Magn. Reson. Chem. 40, 70 (2002)CrossRefGoogle Scholar
  27. 27.
    H. Chihara, N. Nakamura, Nuclear Quadrupole Resonance Spectroscopy Data (Springer Berlin Heidelberg, Heidelberg, 1993), p. 437Google Scholar
  28. 28.
    H. Chihara, N. Nakamura, Nuclear Quadrupole Resonance Spectroscopy Data (Springer Berlin Heidelberg, Heidelberg, 1997), p. 424. https://www.springer.com/us/book/9783540624288 CrossRefGoogle Scholar
  29. 29.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), p. 599Google Scholar
  30. 30.
    C.P. Slichter, Principles of Magnetic Resonance (Harper & Row, New York, 1963), p. 246Google Scholar
  31. 31.
    D. Freude, J. Haase, in NMR Basic Principles and Progress, vol. 29, ed. by P. Diehl, E. Fluck, H. Günther, R. Kosfeld (Springer, Berlin, 1993), pp. 1–90Google Scholar
  32. 32.
    J. Autschbach, S. Zheng, R.W. Schurko, Concepts Magn. Reson. A 36, 84 (2010)CrossRefGoogle Scholar
  33. 33.
    R.E. Wasylishen, S.E. Ashbrook, S. Wimperis, NMR of Quadrupolar Nuclei in Solid Materials (Wiley, Chichester, 2012), p. 584Google Scholar
  34. 34.
    V.S. Grechishkin, Nuclear Quadrupole Interactions in Solids (Nauka, Moscow, 1973), p. 264. (In Russian) Google Scholar
  35. 35.
    J.C.C. Freitas, M.E. Smith, Annu. Rep. NMR Spectrosc. 75, 25 (2012)CrossRefGoogle Scholar
  36. 36.
    P.J. Pallister, I.L. Moudrakovski, J.A. Ripmeester, Phys. Chem. Chem. Phys. 11, 11487 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of SciencesYekaterinburgRussian Federation
  2. 2.Institute of Solid State Chemistry of Ural Branch of Russian Academy of SciencesYekaterinburgRussian Federation

Personalised recommendations