Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 12, pp 1429–1441 | Cite as

Exchange Interactions in Heteronuclear Clusters Containing Dysprosium Ions: EPR Spectroscopy Possibility

  • R. T. GaleevEmail author
  • L. V. Mingalieva
  • A. A. Sukhanov
  • V. K. Voronkova
  • Y. Peng
  • A. K. Powell
Original Paper

Abstract

The exchange interaction in two isostructural compounds [M2Dy23–OH)2(L)2(O2CPh–Me–p)6] (M = Al, Cr) is studied by electron paramagnetic resonance (EPR). Studies have been performed on polycrystalline samples in different frequency ranges. The features of the shape of the spectra of clusters containing dysprosium ions are analyzed and experimental spectra are described using calculated spectra for tetranuclear clusters. The value Jzz = − 0.86 cm−1 of the spin–spin interaction of the Ising form JzzS1zS2z between dysprosium ions in the Al2Dy2 cluster, which exhibits single-molecule magnet properties, was experimentally determined. The study of the heteronuclear Cr2Dy2 cluster has demonstrated a number of features of the EPR spectra due to the Cr–Dy interaction. It is shown that this interaction has a predominantly Ising form with the parameter JCrDyzz = − 1 cm−1. However, the Cr–Dy pair fragment does not have a center of symmetry, and this suggests the presence of an antisymmetric term in the spin–spin interaction tensor, the manifestation of which is observed in the X-band EPR spectrum.

Notes

Acknowledgements

This work was supported in part by the Presidium of the Russian Academy of Sciences Program No. 5: “Photonic technologies in probing inhomogeneous media and biological objects”.

References

  1. 1.
    N. Ishikawa, M. Sugita, T. Ishikawa, S.-Y. Koshihara, Y. Kaizu, J. Am. Chem. Soc. 125, 8694–8695 (2003)CrossRefGoogle Scholar
  2. 2.
    R.J. Blagg, C.A. Muryn, E.J.L. McInnes, F. Tuna, R.E.P. Winpenny, Angew. Chem., Int. Ed. 50, 6530 (2011)CrossRefGoogle Scholar
  3. 3.
    V. Mereacre, A. Baniodeh, C.E. Anson, A.K. Powell, J. Am. Chem. Soc. 133, 15335–15337 (2011)CrossRefGoogle Scholar
  4. 4.
    A. Baniodeh, V. Mereacre, N. Magnani, Y. Lan, J.A. Wolny, V. Schenemann, C.E. Anson, A.K. Powell, Chem. Commun. 49, 9666–9668 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Baniodeh, Y. Lan, G. Novitchi, V. Mereacre, A. Sukhanov, M. Ferbinteanu, V. Voronkova, C.E. Anson, A.K. Powell, Dalton Trans. 42, 8926–8938 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Baniodeh, A. Mondal, R. Galeev, A. Sukhanov, R. Eremina, V. Voronkova, A. Powell, Appl. Magn. Reson. 48(1), 101–113 (2017)CrossRefGoogle Scholar
  7. 7.
    S.K. Langley, D.P. Wielechowski, V. Vieru, N.F. Chilton, B. Moubaraki, B.F. Abrahams, L.F. Chibotaru, K.S. Murray, Angew. Chem. Int. Ed. 52, 12014–12019 (2013); Angew. Chem. 125, 12236–12241 (2013)CrossRefGoogle Scholar
  8. 8.
    S.K. Langley, D.P. Wielechowski, V. Vieru, N.F. Chilton, B. Moubaraki, L.F. Chibotaru, K.S. Murray, Chem. Sci. 5, 3246 (2014)CrossRefGoogle Scholar
  9. 9.
    L. Ungur, M. Thewissen, J.-P. Costes, W. Wernsdorfer, L.F. Chibotaru, Inorg. Chem. 52, 6328–6337 (2013)CrossRefGoogle Scholar
  10. 10.
    S.T. Langley, D.P. Wielechowski, N.F. Chilton, B. Moubaraki, K.S. Murray, Inorg. Chem. 54, 10497–10503 (2015)CrossRefGoogle Scholar
  11. 11.
    S.K. Langley, D.P. Wielechowski, B. Moubaraki, K.S. Murray, Chem. Commun. 52, 10976–10979 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Peng, V. Mereacre, C.E. Anson, A.K. Powell, Phys. Chem. Chem. Phys. 18, 21469–21480 (2016)CrossRefGoogle Scholar
  13. 13.
    V. Vieru, L. Ungur, V. Cemortan, A. Sukhanov, A. Baniodeh, ChE Anson, A.K. Powell, V. Voronkova, L.F. Chibotaru, Chem. Eur. J. 24(62), 16652–16661 (2018)CrossRefGoogle Scholar
  14. 14.
    Y. Peng, M.K. Singh, V. Mereacre, C.E. Anson, G. Rajaraman, A.K. Powell, Chem. Sci. (2019).  https://doi.org/10.1039/c8sc05362f CrossRefGoogle Scholar
  15. 15.
    Q.Y.M. Zheng, H.H. Zou, H.L. Wang, DCh. Liu, YCh. Liu, F.P. Liang, J. Clus. Sci. 30, 25–30 (2019)ADSCrossRefGoogle Scholar
  16. 16.
    D. Gatteschi, R. Sessoli, J. Villain, Molecular Тanomagnetism (Oxford University Press, Oxford, 2007)Google Scholar
  17. 17.
    D. Gatteschi, R. Sessoli, Angew. Chem. Int. Ed. 42, 268–297 (2003)CrossRefGoogle Scholar
  18. 18.
    F.S. Guo, B.M. Day, Y.C. Chen, M.L. Tong, A. Mansikkamäki, R.A. Layfield, Science 362, 400–1403 (2018).  https://doi.org/10.1126/science.aav0652 CrossRefGoogle Scholar
  19. 19.
    V. Tangoulis, A. Figuerola, Chem. Phys. 140, 293–301 (2007)CrossRefGoogle Scholar
  20. 20.
    E.M. Pineda, N.F. Chilton, R. Marx, M. Dorfel, D.O. Sells, P. Neugebauer, S.D. Jiang, D. Collison, J. Slageren, E.J.L. McInnes, R.E.P. Winpenny, Nat. Commun. 5, 5243 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970)Google Scholar
  22. 22.
    L.V. Mingalieva, R.T. Galeev, A.A. Sukhanov, V.K. Voronkova, I.K. Budnikova, G. Novitchi, Appl. Magn. Reson. 49, 61–69 (2018)CrossRefGoogle Scholar
  23. 23.
    K.M. Salikhov, R.T. Galeev, V.K. Voronkova, YuV Yablokov, J. Legendziewicz, Appl. Magn. Reson. 14, 457–472 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RASKazanRussian Federation
  2. 2.Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations