Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 12, pp 1369–1380 | Cite as

Metabolomics Data Analysis Improvement by Use of the Filter Diagonalization Method

  • Hernán J. CervantesEmail author
  • Felipe M. Kopel
  • Said R. Rabbani
Original Paper

Abstract

The filter diagonalization method (FDM) was implemented and used instead of fast Fourier transform (FFT) to obtain the nuclear magnetic resonance (NMR) spectra from the free induction decay (FID) signals. The areas obtained by the FDM, from selected absorption lines, were used as input for a multidimensional method of data analysis. This procedure was applied in a NMR-based metabolomics investigation. In FDM, instead of spectra, the absorption peaks’ specification, such as central frequency, line width, amplitude and relative phases, are estimated and the spectra are built using this information. Therefore, one can select the lines by width and intensity to exclude the broad lines such as baseline, solvent line and albumin peak. Also lines with small amplitude such as noise can be excluded from the spectra. Moreover, the spectra do not suffer from aliasing or baseline problems. These characteristics are fundamental in the metabolomics investigations. To show the superiority of our method over the standard FFT to obtain the spectra, we reconstructed the spectra from simulated FID by both methods. As an example, this new approach is used to analyze the non-small cell lung cancer A549 exposed to different treatments and principal component analysis is used to compare the performance of both methods.

Notes

Acknowledgements

The author HJC wants to thank Dr. Claudio Jose Magon for the useful discussions about the FDM. The NMR experiments were executed at the Laboratório Nacional de Biociências (LNBIO), part of the Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), project RMN-20606. The authors desire to express gratitude to Sílvia Rocco and Maurício Luís Sforça of the LNBIO for their assistance in NMR measurements. The non-small cell lung cancer, A549 cells line, were cultivated with collaboration of Dr. Roger Chammas group in Cancer Institute of the São Paulo State (ICESP).

Supplementary material

723_2019_1158_MOESM1_ESM.pdf (245 kb)
Supplementary material 1 (pdf 245 KB)

References

  1. 1.
    E.D. Lawe, J. Skiling, J. Staunton, S. Sibisi, R. Brereton, J. Magn. Reson. 62, 437–452 (1985)ADSGoogle Scholar
  2. 2.
    H. Barkhuijsen, R. Debeer, W.M.M.J. Bovee, J.H.N. Creyghton, D. Vanormondt, Magn. Reson. Med. 2(1), 86–89 (1985).  https://doi.org/10.1002/mrm.1910020111 CrossRefGoogle Scholar
  3. 3.
    R.H. Cervantes, S.R. Rabbani, Solid State Commun. 110(4), 215–220 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    S. Haykin (ed.), Nonlinear Methods of Spectral Analysis (Springer, Berlin New York, 1979)Google Scholar
  5. 5.
    V.A. Mandelshtam, H.S. Taylor, J. Chem. Phys. 107(17), 6756–6769 (1997).  https://doi.org/10.1063/1.475324 ADSCrossRefGoogle Scholar
  6. 6.
    J.H. Chen, V.A. Mandelshtam, A.J. Shaka, J. Magn. Reson. 146(2), 363–368 (2000).  https://doi.org/10.1006/jmre.2000.2155 ADSCrossRefGoogle Scholar
  7. 7.
    C. Magon, Livre docencia, Instituto de Física da USP de São Carlos (2007)Google Scholar
  8. 8.
    B. Dai, C.D. Eads, Magn. Reson. Chem. 48(3), 230–234 (2010).  https://doi.org/10.1002/mrc.2550 CrossRefGoogle Scholar
  9. 9.
    A. Zhang, H. Sun, P. Wang, Y. Han, X. Wang, Analyst 137(2), 293–300 (2012).  https://doi.org/10.1039/C1AN15605E ADSCrossRefGoogle Scholar
  10. 10.
    M. Mamas, W.B. Dunn, L. Neyses, R. Goodacre, Arch. Toxicol. 85(1), 5–17 (2011).  https://doi.org/10.1007/s00204-010-0609-6 CrossRefGoogle Scholar
  11. 11.
    V.N. Kristensen, O.C. Lingjoerde, H.G. Russnes, H.K.M. Vollan, A. Frigessi, A.-L. Borresen-Dale, Nat. Rev. Cancer 14(5), 299–313 (2014).  https://doi.org/10.1038/nrc3721 CrossRefGoogle Scholar
  12. 12.
    L. Fernandez, A. Rodriguez, P. Garcia, ISME J. 12(5), 1171–1179 (2018).  https://doi.org/10.1038/s41396-018-0049-5 CrossRefGoogle Scholar
  13. 13.
    T. Young, A.C. Alfaro, Rev. Aquac. 10(1), 26–56 (2018).  https://doi.org/10.1111/raq.12146 CrossRefGoogle Scholar
  14. 14.
    R. Alcazar, T. Altabella, F. Marco, C. Bortolotti, M. Reymond, C. Koncz, P. Carrasco, A.F. Tiburcio, Planta 231(6), 1237–1249 (2010).  https://doi.org/10.1007/s00425-010-1130-0 CrossRefGoogle Scholar
  15. 15.
    J.M. Cevallos-Cevallos, J.I. Reyes-De-Corcuera, E. Etxeberria, M.D. Danyluk, G.E. Rodrick, Trends Food Sci. Technol. 20(11–12), 557–566 (2009).  https://doi.org/10.1016/j.tifs.2009.07.002 CrossRefGoogle Scholar
  16. 16.
    J.G. Bundy, M.P. Davey, M.R. Viant, Metabolomics 5(1), 3–21 (2009).  https://doi.org/10.1007/s11306-008-0152-0 CrossRefGoogle Scholar
  17. 17.
    R. Bracewell, The Fourier Transform and its Applications. McGraw-Hill Series in Electrical Engineering Circuits and Systems (McGraw-Hill, New York, 1986)Google Scholar
  18. 18.
    I. Karaman, D.L.S. Ferreira, C.L. Boulangé, M.R. Kaluarachchi, D. Herrington, A.C. Dona, R. Castagné, A. Moayyeri, B. Lehne, M. Loh, P.S. de Vries, A. Dehghan, O.H. Franco, A. Hofman, E. Evangelou, I. Tzoulaki, P. Elliott, J.C. Lindon, T.M.D. Ebbels, J. Proteome Res. 15(12), 4188–4194 (2016).  https://doi.org/10.1021/acs.jproteome.6b00125 CrossRefGoogle Scholar
  19. 19.
    R. Vettukattil, in Methods in Molecular Biology (Springer Nature, 2015), pp. 123–136.  https://doi.org/10.1007/978-1-4939-2377-9_10 Google Scholar
  20. 20.
    D. Neuhauser, J. Chem. Phys. 93(4), 2611–2616 (1990).  https://doi.org/10.1063/1.458900 ADSCrossRefGoogle Scholar
  21. 21.
    M. Goldman, Quantum Description of High-Resolution NMR in Liquids, International Series of Monographs on Chemistry (Oxford University Press, Clarendon, 1991)Google Scholar
  22. 22.
    Chenomx Inc., Chenomx nmr suite 7.7 (2013). https://www.chenomx.com/
  23. 23.
    P.S. Bacchi, A.C. Bloise, S.O. Bustos, L. Zimmermann, R. Chammas, S.R. Rabbani, Springerplus 3, 470 (2014).  https://doi.org/10.1186/2193-1801-3-470 CrossRefGoogle Scholar
  24. 24.
    A.B. Martins-Bach, A.C. Bloise, M. Vainzof, S.R. Rabbani, Magn. Reson. Imaging 30(8), 1167–1176 (2012).  https://doi.org/10.1016/j.mri.2012.04.003 CrossRefGoogle Scholar
  25. 25.
    A.B. Martins-Bach, A.C. Bloise, S.R. Rabbani, M. Vainzof, Neuromuscul. Disord. 21(9–10), 655–655 (2011).  https://doi.org/10.1016/j.nmd.2011.06.805 CrossRefGoogle Scholar
  26. 26.
    F. Savorani, G. Tomasi, S.B. Engelsen, J. Magn. Reson. 202(2), 190–202 (2010).  https://doi.org/10.1016/j.jmr.2009.11.012 ADSCrossRefGoogle Scholar
  27. 27.
    M. Hollander, D.A. Wolfe, E. Chicken, The One-Way Layout (Wiley, New York, 2015), Ch. 6, pp. 202–288.  https://doi.org/10.1002/9781119196037.ch6
  28. 28.
    P.H. Kvam, B. Vidakovic, Designed Experiments (Wiley, New Jersey, 2007), Ch. 8, pp. 141–152.  https://doi.org/10.1002/9780470168707.ch8
  29. 29.
    I. Jolliffe, Principal Component Analysis (Springer, New York, 2002)zbMATHGoogle Scholar
  30. 30.
    B.B. Misra, S. Mohapatra, Electrophoresis 40(2), 227–246 (2019).  https://doi.org/10.1002/elps.201800428 CrossRefGoogle Scholar
  31. 31.
    H.U. Zacharias, M. Altenbuchinger, W. Gronwald, Metabolites 8(3), 47 (2018).  https://doi.org/10.3390/metabo8030047 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations