Applied Magnetic Resonance

, Volume 50, Issue 12, pp 1345–1357 | Cite as

Study on the Structure of C-S-H Gels of Slag–Cement Hardened Paste by 29Si, 27Al MAS NMR

  • Yijiao Dong
  • Chunhua FengEmail author
  • Qian Zhao
  • Xueqian Liang
Original Paper


In this paper, the 29Si and 27Al MAS NMR techniques were utilized to investigate the structure of C-S-H gels of slag cement-hardened paste. The results show that in the hardened paste of Portland cement, the silicate tetrahedron [SiO4]4− exists in the Q0, Q1 and Q2 states, and the C-S-H gel mainly exists as the dimer (Q1). After hydration for 3 days, Al3+ replaces some of the Si4+ in the tetrahedra and generates an aluminum-containing C-A-S-H gel. As the hydration proceeds, the content of C-A-S-H gel increases gradually. With an increase in the replacement of cement with slag, the content of Q2 (1 Al) in the C-A-S-H gel increases significantly, and the mean chain length of the C-(A)-S-H gel increases. For the slag–cement blend with 50% slag replacement, the mean chain length reaches 4.3, and the Al/Si ratio reaches 0.11. Throughout the hydration stage, three coordination states (AlO4, AlO5, and AlO6) exist in the hardened paste of the slag–cement blends.



This work was sponsored by the National Natural Science Foundation of China (No. 51502080, No. U1704148) and Natural Science Foundation of Henan Province (No. 162300410118).


  1. 1.
    S.L. Poulsen, Methodologies for Measuring the Degree of Reaction in Portland Cement Blends with Supplementary Cementitious Materials by 27 Al and 29 Si MAS NMR Spectroscopy (Aarhus University, Aarhus, 2009)Google Scholar
  2. 2.
    I.G. Richardson, Cem. Concr. Res. 29, 1131–1147 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    K. Kupwade-Patil, S.D. Palkovic, A. Bumajdad, C. Soriano, O. Buyukozturk, Constr. Build. Mater. 158, 574–590 (2018)CrossRefGoogle Scholar
  4. 4.
    Z. He, C. Qian, S. Du, M. Huang, M. Xia, J. Wuhan Univ. Technol. 32, 417–421 (2017)CrossRefGoogle Scholar
  5. 5.
    Y. Li, P. Wang, Z. Guan, Q. Ding, J. Nano Res. 46, 31–44 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Moon, M.M.R. Taha, K. Youm, J.J. Kim, Materials 9, 99 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    X. Gao, Y. Wei, W. Huang, Chin. J. Mater. Res. 5, 321–328 (2016)Google Scholar
  8. 8.
    E. Pustovgar, R.P. Sangodkar, A.S. Andreev, M. Palacios, B.F. Chmelka, R.J. Flatt, J.D. de Lacaillerie, Nat. Commun. 7, 10952 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    A. Peyvandi, D. Holmes, P. Soroushian, A.M. Balachandra, J. Mater. Civil Eng. 27, 4014226 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Mendes, W.P. Gates, J.G. Sanjayan, F. Collins, Mater. Struct. 44, 1773–1791 (2011)Google Scholar
  11. 11.
    Q. Shen, G. Pan, B. Bao, Adv. Cem. Res. 30, 427–436 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Zhang, X. Zhang, Q. Ding, D. Hou, K. Liu, J. Wuhan Univ. Technol. Mater. Sci Ed. 33, 639–647 (2018)CrossRefGoogle Scholar
  13. 13.
    E. Kapeluszna, L. Kotwica, A. Rozycka, L. Golek, Constr. Build. Mater. 155, 643–653 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Xiao, H. Zhu, F. Wu, Bull. Chin. Ceram. Soc. 35, 3594–3599 (2016)Google Scholar
  15. 15.
    L. Vidal, E. Joussein, M. Colas, J. Cornette, J. Sanz, I. Sobrados, J.L. Gelet, J. Absi, S. Rossignol, Colloids Surf. A 503, 101–109 (2016)CrossRefGoogle Scholar
  16. 16.
    T.F. Sevelsted, J. Skibsted, Cem. Concr. Res. 71, 56–65 (2015)CrossRefGoogle Scholar
  17. 17.
    N. Nestle, M. Dakkouri, O. Geier, D. Freude, J. Kärger, J. Appl. Phys. 88, 4269–4273 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    K. Friedemann, W. Schönfelder, F. Stallmach, J. Kärger, Mater. Struct. 41, 1647–1655 (2008)CrossRefGoogle Scholar
  19. 19.
    A.C.A. Muller, K.L. Scrivener, A.M. Gajewicz, P.J. Mcdonald, J. Phys. Chem. C 117, 403–412 (2013)CrossRefGoogle Scholar
  20. 20.
    G. Engelhardt, D. Michel, High-Resolution Solid-Sstate NMR of Silicates and Zeolites (John Wiley, New York, 1987)Google Scholar
  21. 21.
    D.A. Netzel, Multinuclear NMR Approach to Coal Fly Ash Characterization (Western Research Institute, Laramie, 1991)Google Scholar
  22. 22.
    J. Hjorth, J. Skibsted, H.J. Jakobsen, Cem. Concr. Res. 18, 789–798 (1988)CrossRefGoogle Scholar
  23. 23.
    H. Justnes, I. Meland, J.O. Bjoergum, J. Krane, T. Skjetne, Adv. Cem. Res. 3, 105–110 (1990)CrossRefGoogle Scholar
  24. 24.
    G. Engelhardt, TrAC Trends Anal. Chem. 8, 343–347 (1989)CrossRefGoogle Scholar
  25. 25.
    G. Engelhardt, H. Koller, in Solid-State NMR II, ed. by B. Blümich (Springer, Berlin, 1994)Google Scholar
  26. 26.
    K. Johansson, C. Larsson, O.N. Antzutkin, W. Forsling, H.R. Kota, V. Ronin, Cem. Concr. Res. 29, 1575–1581 (1999)CrossRefGoogle Scholar
  27. 27.
    I.G. Richardson, A.R. Brough, R. Brydson, G.W. Groves, C.M. Dobson, J. Am. Ceram. Soc. 76, 2285–2288 (1993)CrossRefGoogle Scholar
  28. 28.
    P. Faucon, T. Charpentier, D. Bertrandie, A. Nonat, J. Virlet, J.C. Petit, Inorg. Chem. 37, 3726–3733 (1998)CrossRefGoogle Scholar
  29. 29.
    M.D. Andersen, H.J. Jakobsen, J. Skibsted, Inorg. Chem. 42, 2280–2287 (2003)CrossRefGoogle Scholar
  30. 30.
    D. Massiot, F. Fayon, M. Capron, I. King, S. Le Cal, B. Alonso, J. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40, 70–76 (2002)CrossRefGoogle Scholar
  31. 31.
    G. Paul, E. Boccaleri, L. Buzzi, F. Canonico, D. Gastaldi, Cem. Concr. Res. 67, 93–102 (2015)CrossRefGoogle Scholar
  32. 32.
    J. De Lacaillerie, C. Fretigny, D. Massiot, J. Magn. Reson. 192, 244–251 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    S.V. Churakov, C. Labbez, J. Phys. Chem. C 121, 4412–4419 (2017)CrossRefGoogle Scholar
  34. 34.
    H. Manzano, J.S. Dolado, A. Ayuela, J. Phys. Chem. B 113, 2832–2839 (2009)CrossRefGoogle Scholar
  35. 35.
    Z. Dai, T.T. Tran, J. Skibsted, J. Am. Ceram. Soc. 97, 2662–2671 (2014)CrossRefGoogle Scholar
  36. 36.
    L. Lu, Y. He, M. He, S. Hu, J. Chin. Ceram. Soc. 45, 1096–1100 (2017)Google Scholar
  37. 37.
    M.C. Cruickshank, L.S.D. Glasser, S.A.I. Barri, I.J.F. Poplett, J. Chem. Soc. Chem. Commun. 1986, 23b–24b (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHenan Polytechnic UniversityJiaozuoChina

Personalised recommendations