On the Difficulties and Pitfalls with the Analysis of Solid-State 13C NMR Spectra in Graphitic Materials

  • Jair C. C. FreitasEmail author
Original Paper


The difficulties and pitfalls with the interpretation of solid-state 13C nuclear magnetic resonance (NMR) spectra in graphitic materials are discussed in detail here, with special emphasis on the case of 13C-enriched samples, which have been used in several recent NMR studies. The issues with the spectral simulation and the interpretation of the spectral parameters obtained by some arbitrary models reported in the recent literature are examined and alternative methods to obtain informative experimental data and to analyze them in a more appropriate way are presented.



The financial support from the Brazilian agencies CNPq (Grant 408001/2016-0), FAPES (Grant 73296872, TO 21/2016) and CAPES (Grant 88881.178317/2018-01) is gratefully acknowledged.


  1. 1.
    Y. Maniwa, M. Sato, K. Kume, M.E. Kozlov, M. Tokumoto, Carbon 34, 1287–1291 (1996)CrossRefGoogle Scholar
  2. 2.
    C. Goze-Bac, S. Latil, P. Lauginie, V. Jourdain, J. Conard, L. Duclaux, A. Rubio, P. Bernier, Carbon 40, 1825–1842 (2002)CrossRefGoogle Scholar
  3. 3.
    J.C.C. Freitas, A.G. Cunha, F.G. Emmerich, in Chemistry and Physics of Carbon, ed. by L.R. Radovic (CRC Press, Boca Raton, 2012), pp. 85–170Google Scholar
  4. 4.
    M. Deschamps, S. Cadars, E. Gilbert, P. Azaïs, E. Raymundo-Pinero, F. Béguin, D. Massiot, Solid State Nucl. Magn. Reson. 42, 81–86 (2012)CrossRefGoogle Scholar
  5. 5.
    J.C.C. Freitas, F.G. Emmerich, G.R.C. Cernicchiaro, L.C. Sampaio, T.J. Bonagamba, Solid State Nucl. Magn. Reson. 20, 61–73 (2001)CrossRefGoogle Scholar
  6. 6.
    M.A. Vieira, G.R. Gonçalves, D.F. Cipriano, M.A. Schettino Jr., E.A. Silva Filho, A.G. Cunha, F.G. Emmerich, J.C.C. Freitas, Carbon 98, 496–503 (2016)CrossRefGoogle Scholar
  7. 7.
    A.M. Panich, A.I. Shames, N.A. Sergeev, M. Olszewski, J.K. McDonough, V.N. Mochalin, Y. Gogotsi, J. Phys. Condens. Matter 25, 245303 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Panich, A.I. Shames, M.I. Tsindlekht, V.Y. Osipov, M. Patel, K. Savaram, H. He, J. Phys. Chem. C 120, 3042 (2016)CrossRefGoogle Scholar
  9. 9.
    S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)CrossRefGoogle Scholar
  10. 10.
    Y. Si, E.T. Samulski, Nano Lett. 8, 1679–1682 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, Nat. Chem. 1, 403–408 (2009)CrossRefGoogle Scholar
  12. 12.
    A.M. Panich, A.I. Shames, A.E. Aleksenskii, A. Dideikin, Solid State Commun. 152, 466–468 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    N.A. Sergeev, A.M. Panich, S.D. Goren, Appl. Magn. Reson. 49, 999–1010 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Hayashi, F. Hoshi, T. Ishikura, M. Yumura, S. Ohshima, Carbon 41, 3047–3056 (2003)CrossRefGoogle Scholar
  15. 15.
    W. Cai, R.D. Piner, F.J. Stadermann, S. Park, M.A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S.J. An, M. Stoller, J. An, D. Chen, R.S. Ruoff, Science 321, 1815–1817 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    L.B. Casabianca, M.A. Shaibat, W.W. Cai, S. Park, R. Piner, R.S. Ruoff, Y. Ishi, J. Am. Chem. Soc. 132, 5672–5676 (2010)CrossRefGoogle Scholar
  17. 17.
    Y.V. Fedoseeva, A.V. Okotrub, V.O. Koroteev, Y.M. Borzdov, Y.N. Palyanov, Y.V. Shubin, E.A. Maksimovskiy, A.A. Makarova, W. Münchgesang, L.G. Bulusheva, A. Vyalikh, Carbon 141, 323–330 (2019)CrossRefGoogle Scholar
  18. 18.
    D.L. VanderHart, W.L. Earl, A.N. Garroway, J. Magn. Reson. 44, 361–401 (1981)ADSGoogle Scholar
  19. 19.
    V.E. Zorin, S.P. Brown, P. Hodgkinson, J. Chem. Phys. 125, 144508 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    V.O. Koroteev, W. Münchgesang, Y.V. Shubin, Y.N. Palyanov, P.E. Plyusnin, D.A. Smirnov, K.A. Kovalenko, M. Bobnar, R. Gumeniuk, E. Brendler, D.C. Meyer, L.G. Bulusheva, A.V. Okotrub, A. Vyalikh, Carbon 124, 161–169 (2017)CrossRefGoogle Scholar
  21. 21.
    M.M. Golzan, P.B. Lukins, D.R. McKenzie, A.M. Vassallo, J.V. Hanna, Chem. Phys. 193, 167–172 (1995)CrossRefGoogle Scholar
  22. 22.
    F. Mauri, B.G. Pfrommer, S.G. Louie, Phys. Rev. Lett. 79, 2340–2343 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    T.M. Alam, T.A. Friedmann, P.A. Schultz, D. Sebastiani, Phys. Rev. B 67, 245309 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    E. Zurek, C.J. Pickard, J. Autschbach, J. Phys. Chem. C 112, 11744–11750 (2008)CrossRefGoogle Scholar
  25. 25.
    L.B. Casabianca, J. Phys. Chem. A 120, 7011–7019 (2016)CrossRefGoogle Scholar
  26. 26.
    P.A. Christy, A.J. Peter, C.W. Lee, Solid State Commun. 283, 22–26 (2018)ADSCrossRefGoogle Scholar
  27. 27.
    G. Cho, B.K. Yen, C.A. Klug, J. Appl. Phys. 104, 013531 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    J. Mao, X. Cao, D.C. Olk, W. Chu, K. Schmidt-Rohr, Prog. Nucl. Magn. Reson. Spectrosc. 100, 17–51 (2017)CrossRefGoogle Scholar
  29. 29.
    J.Z. Hu, M.S. Solum, C.M.V. Taylor, R.J. Pugmire, D.M. Grant, Energy Fuels 15, 14–22 (2001)CrossRefGoogle Scholar
  30. 30.
    D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calvé, B. Alonso, J.-O. Durand, B. Bujoli, Z. Gan, G. Hoatson, Magn. Reson. Chem. 40, 70–76 (2002)CrossRefGoogle Scholar
  31. 31.
    R.K. Harris, E.D. Becker, S.M.C. De Menezes, P. Granger, R.E. Hoffman, K.W. Zilm, Pure Appl. Chem. 80, 59–84 (2008)CrossRefGoogle Scholar
  32. 32.
    F.A.L. De Souza, A.R. Ambrozio, E.S. Souza, D.F. Cipriano, W.L. Scopel, J.C.C. Freitas, J. Phys. Chem. C 120, 27707–27716 (2016)CrossRefGoogle Scholar
  33. 33.
    P. Lauginie, A. Messaoudi, J. Conard, Synth. Met. 55–57, 3002–3007 (1993)CrossRefGoogle Scholar
  34. 34.
    N.K. Sethi, R.J. Pugmire, J.C. Facelli, D.M. Grant, Anal. Chem. 60, 1574–1579 (1988)CrossRefGoogle Scholar
  35. 35.
    H. Darmstadt, C. Roy, S. Kaliaguine, G. Xu, M. Auger, A. Tuel, V. Rmaswamy, Carbon 38, 1279–1287 (2000)CrossRefGoogle Scholar
  36. 36.
    J. Vähäkängas, S. Ikäläinen, P. Lantto, J. Vaara, Phys Chem Chem Phys 15, 4634–4641 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Carbon and Ceramic Materials, Department of PhysicsFederal University of Espírito Santo (UFES)VitóriaBrazil

Personalised recommendations