Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 11, pp 1291–1303 | Cite as

Determination of Acrolein-Associated T1 and T2 Relaxation Times and Noninvasive Detection Using Nuclear Magnetic Resonance and Magnetic Resonance Spectroscopy

  • Nicole Vike
  • Jonathan Tang
  • Thomas Talavage
  • Riyi ShiEmail author
  • Joseph RispoliEmail author
Original Paper
  • 47 Downloads

Abstract

An estimated 3.3 million people are living with a traumatic brain injury (TBI)-associated morbidity. Currently, only invasive and sacrificial methods exist to study neurochemical alterations following TBI. Nuclear magnetic resonance methods—magnetic resonance imaging (MRI) and spectroscopy (MRS)—are powerful tools which may be used noninvasively to diagnose a range of medical issues. These methods can be utilized to explore brain functionality, connectivity, and biochemistry. Unfortunately, many of the commonly studied brain metabolites (e.g., N-acetyl-aspartate, choline, creatine) remain relatively stable following mild to moderate TBI and may not be suitable for longitudinal assessment of injury severity and location. Therefore, a critical need exists to investigate alternative biomarkers of TBI, such as acrolein. Acrolein is a byproduct of lipid peroxidation and accumulates following damage to neuronal tissue. Acrolein has been shown to increase in post-mortem rat brain tissue following TBI. However, no methods exist to noninvasively quantify acrolein in vivo. Currently, we have characterized the T1 and T2 of acrolein via nuclear magnetic resonance saturation recovery and Carr–Purcell–Meiboom–Gill experiments, accordingly, to maximize the signal-to-noise ratio of acrolein obtained with MRS. In addition, we have quantified acrolein in water and whole-brain phantom using PRESS MRS and standard post-processing methods. With this potential novel biomarker for assessing TBI, we can investigate methods for predicting acute and chronic neurological dysfunction in humans and animal models. By quantifying and localizing acrolein with MRS, and investigating neurological outcomes associated with in vivo measures, patient-specific interventions could be developed to decrease TBI-associated morbidity and improve quality of life.

Notes

Acknowledgements

This work was supported in part by the National Institutes of Health (Grant Nos. NS073636 and 1 R21 NS090244-01 to R.S.) and a Project Development Team within the ICTSI NIH/NCRR (Grant Number UL1TR001108). The authors gratefully acknowledge support from the Purdue University Center for Cancer Research, NIH grant P30 CA023168. We would also like to acknowledge the Purdue NMR Facility, including Dr. Huaping Mo and Dr. John Harwood, for their expert guidance with experimental design and implementation, and Dr. Gregory Tamer for continued assistance with the 7T Bruker system.

Compliance with Ethical Standards

Conflict of Interest

The authors have no conflicts of interest to declare.

Supplementary material

723_2019_1148_MOESM1_ESM.pdf (1.1 mb)
Supplementary material 1 (PDF 1078 kb)

References

  1. 1.
    Centers for Disease Control and Prevention. Report to Congress on Traumatic Brain Injury in the United States; Epidemiology and Rehabilitation (National Center for Injury Prevention and Control; Division of Unintentional Injury Prevention, 2015). https://www.cdc.gov/traumaticbraininjury/pdf/TBI_Report_to_Congress_Epi_and_Rehab-a.pdf. Accessed 10 Aug 10 2018
  2. 2.
    C.A. Taylor, J.M. Bell, M.J. Breiding, MMWR Surveill. Summ. 66, SS-9 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Vicente, E. Fuster-Garcia, S. Tortajada, J.M. García-Gómez, N. Davies, K. Natarajan, M. Wilson, R.G. Grundy, P. Wesseling, D. Monleón, B. Celda, M. Robles, A.C. Peet, Eur. J. Cancer 49, 658 (2013)CrossRefGoogle Scholar
  4. 4.
    S. Ulmer, M. Backens, F.J. Ahlhelm, J. Comput. Assist. Tomogr. 40, 1 (2016)CrossRefGoogle Scholar
  5. 5.
    T.L. Richards, Am. J. Roentgenol. 57, 1073 (1991)CrossRefGoogle Scholar
  6. 6.
    R. Vagnozzi, S. Signoretti, L. Cristofori, F. Alessandrini, R. Floris, E. Isgrò, A. Ria, S. Marziale, G. Zoccatelli, B. Tavazzi, F. Del Bolgia, R. Sorge, S.P. Broglio, T.K. McIntosh, G. Lazzarino, Brain 133, 3232 (2010)CrossRefGoogle Scholar
  7. 7.
    V.N. Poole, K. Abbas, T.E. Shenk, E.L. Breedlove, K.M. Breedlove, M.E. Robinson, L.J. Leverenz, E.A. Nauman, T.M. Talavage, U. Dydak, Dev. Neuropsychol. 39, 459 (2014)CrossRefGoogle Scholar
  8. 8.
    H. Zhu, P.B. Barker, Methods Mol. Biol. 711, 203 (2011)CrossRefGoogle Scholar
  9. 9.
    M. Desseilles, T. Dang-Vu, M. Schabus, V. Sterpenich, P. Maquet, S. Schwartz, Sleep 31, 777 (2008)CrossRefGoogle Scholar
  10. 10.
    D.W. Simon, M.J. McGeachy, H. Bayır, R.S.B. Clark, D.J. Loane, P.M. Kochanek, Nat. Publ. Gr. 13, 171 (2017)Google Scholar
  11. 11.
    A. Dennis, A.G. Thomas, N.B. Rawlings, J. Near, T.E. Nichols, S. Clare, H. Johansen-Berg, C.J. Stagg, Front. Physiol. 6, 1 (2015)CrossRefGoogle Scholar
  12. 12.
    E.D. Hall, J.A. Wang, J.M. Bosken, I.N. Singh, J. Bioenerg. Biomembr. 48, 169 (2016)CrossRefGoogle Scholar
  13. 13.
    C. Shao, K.N. Roberts, W.R. Markesbery, S.W. Scheff, M.A. Lovell, Free Radic. Biol. Med. 41, 77 (2006)CrossRefGoogle Scholar
  14. 14.
    R. Shi, T. Rickett, W. Sun, Mol. Nutr. Food Res. 55, 1320 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Shi, J.C. Page, M. Tully 49, 7 (2015)Google Scholar
  16. 16.
    Integrated Risk Information System. Toxicology review of acrolein CAS No. 107-02-8. (United States Environmental Protection Agency, 2003), https://cfpub.epa.gov/ncea/iris/iris_documents/documents/toxreviews/0364tr.pdf. Accessed 15 Aug 2018
  17. 17.
    D.P. Ghilarducci, R.S. Tjeerdema, Rev. Environ. Contam. Toxicol. 144, 95 (1995)Google Scholar
  18. 18.
    M.K. Walls, N. Race, L. Zheng, S. Vega-Alvarez, G. Acosta, J. Park, R. Shi, J. Neurosurg. 124, 675 (2016)CrossRefGoogle Scholar
  19. 19.
    M.A. Ansari, K.N. Roberts, S.W. Scheff, Free Radic. Biol. Med. 45, 443 (2008)CrossRefGoogle Scholar
  20. 20.
    K. Hamann, A. Durkes, H. Ouyang, K. Uchida, A. Pond, R. Shi, J. Neurochem. 107, 712 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Tully, J. Tang, L. Zheng, G. Acosta, R. Tian, L. Hayward, N. Race, D. Mattson, R. Shi, Front. Neurol. 9, 420 (2018)CrossRefGoogle Scholar
  22. 22.
    D.V. Agoston, A. Shutes-David, E.R. Peskind, Brain Inj. 31, 1195 (2017)CrossRefGoogle Scholar
  23. 23.
    K. Kawata, C.Y. Liu, S.F. Merkel, S.H. Ramirez, R.T. Tierney, D. Langford, Neurosci. Biobehav. Rev. 68, 460 (2016)CrossRefGoogle Scholar
  24. 24.
    Human Metabolome Database 1H NME Spectrum HMDB0041822. (HMDB, 2014), http://www.hmdb.ca/spectra/nmr_one_d/2100. Accessed 10 Aug 2018
  25. 25.
    J. Luo, K. Uchida, R. Shi, Neurochem. Res. 30, 291 (2005)CrossRefGoogle Scholar
  26. 26.
    W.Y. Chen, J. Zhang, S. Ghare, S. Barve, C. Mcclain, S. Joshi-Barve, Cell. Mol. Gastroenterol. Hepatol. 2, 685 (2016)CrossRefGoogle Scholar
  27. 27.
    J.A. Aguilar, M. Nilsson, G. Bodenhausen, G.A. Morris, Chem. Commun. 48, 811 (2012)CrossRefGoogle Scholar
  28. 28.
    M.R. Willcott, J. Am. Chem. Soc. 131, 13180 (2009)CrossRefGoogle Scholar
  29. 29.
    L. Minati, D. Aquino, M.G. Bruzzone, A. Erbetta, J. Med. Phys. 35, 154 (2010)CrossRefGoogle Scholar
  30. 30.
    R. Freeman, H.D.W. Hill, J. Chem. Phys. 51, 3367 (1969)CrossRefGoogle Scholar
  31. 31.
    S.K. Vaish, A. Singh, A.K. Singh, N.K. Mehrotra, Indian J. Pure Appl. Phys. 43, 295 (2005)Google Scholar
  32. 32.
    F. Guenneau, P. Mutzenhardt, D. Grandclaude, D. Canet, J. Magn. Reson. 140, 250 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 7 (1948)ADSCrossRefGoogle Scholar
  34. 34.
    R. Kaiser, J. Chem. Phys. 42, 1838 (1965)ADSCrossRefGoogle Scholar
  35. 35.
    E. Dhamala, I. Abdelkefi, M. Nguyen J.T. Hennessy, H. Nadeau. NMR Biomed. 32, 3 (2019)Google Scholar
  36. 36.
    L. Xin, I. Tkáč, Anal. Biochem. 529 (2017)Google Scholar
  37. 37.
    H. Zhu, P.B. Barker, Methods Mol. Biol. 711 (2011)Google Scholar
  38. 38.
    J.R. Alger, Top. Magn. Reson. Imaging 21, 2 (2010)CrossRefGoogle Scholar
  39. 39.
    Z. Tong, T. Yamaki, K. Harada, K. Houkin, J. Magn. Reson. Imaging 22, 7 (2004)Google Scholar
  40. 40.
    M.G. Stovell, J. Yan, A. Sleigh, M. Mada, A.T. Carpenter, P.J.A. Hutchinson, K.L.H. Carpenter, Front. Neurol. 8, 426 (2017)CrossRefGoogle Scholar
  41. 41.
    R. Vagnozzi, S. Signoretti, L. Cristofori, F. Alessandrini, R. Floris, E. Isgrò, A. Ria, S. Marziale, G. Zoccatelli, B. Tavazzi, F. Bolgia, R. Sorge, S. Broglio, T. McIntosh, G. Lazaarino, Brain 133, 11 (2010)CrossRefGoogle Scholar
  42. 42.
    C. Gasprovnic, R. Yeo, M. Mannell, J. Ling, R. Elgie, J. Phillips, D. Doezema, A.R. Mayer, J. Neurotrauma 26, 10 (2009)Google Scholar
  43. 43.
    M. Wilson, G. Reynolds, R.A. Kauppinen, T.N. Arvanitis, A.C. Peet, Magn. Reson. Med. 65, 1–2 (2011)CrossRefGoogle Scholar
  44. 44.
    S. Provencher, Magn. Reson. Med. 30, 672 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic Medical SciencesPurdue UniversityWest LafayetteUSA
  2. 2.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Center for Cancer ResearchPurdue UniversityWest LafayetteUSA

Personalised recommendations