Advertisement

1H NMR study of the effect of cucurbit[7]uril on the aquation of carboplatin in biologically relevant media

  • Irina Valerievna MirzaevaEmail author
  • Irina Valentinovna Andrienko
  • Ekaterina Aleksandrovna Kovalenko
  • Ekaterina Aleksandrovna Pashkina
  • Alina Aleksandrovna Aktanova
Original Paper
  • 7 Downloads

Abstract

The aquation of carboplatin, a second-generation Pt(II)-based antitumor drug, in two biologically relevant media (PBS buffer solution and RPMI-1640 medium for cell growth) has been studied by means of 1H nuclear magnetic resonance spectroscopy. The effect of the macrocyclic cavitand cucurbit[7]uril on the carboplatin aquation rates in these two types of media has also been studied. Although, the cucurbit[7]uril does not form stable inclusion complex with carboplatin, it greatly affects the carboplatin aquation rates, presumably, through the two mechanisms: prevention of the carboplatin dimer formation and encapsulation of some components of the medium.

Notes

Acknowledgements

The work was supported by the Russian Foundation for Basic Research (RFBR) grant 18-315-00158 mol_a.

References

  1. 1.
    A.J. Di Pasqua, J. Goodisman, J.C. Dabrowiak, Inorganica Chim. Acta 389, 29 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Dilruba, G.V. Kalayda, Cancer Chemother. Pharmacol. 77, 1103 (2016)CrossRefGoogle Scholar
  3. 3.
    I.V. Mirzaeva, N.K. Moroz, I.V. Andrienko, E.A. Kovalenko, J. Mol. Struct. 1163, 68 (2018)ADSCrossRefGoogle Scholar
  4. 4.
    M. Apps, E. Choi, N. Wheate, Endocr. Relat. Cancer 22, R219 (2015)CrossRefGoogle Scholar
  5. 5.
    N.J. Wheate, J. Inorg. Biochem. 102, 2060 (2008)CrossRefGoogle Scholar
  6. 6.
    O.A. Gerasko, E.A. Kovalenko, V.P. Fedin, Russ. Chem. Rev. 85, 795 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    N.J. Wheate, C. Limantoro, Supramol. Chem. 28, 849 (2016)CrossRefGoogle Scholar
  8. 8.
    J.A. Plumb, B. Venugopal, R. Oun, N. Gomez-Roman, Y. Kawazoe, N.S. Venkataramanan, N.J. Wheate, Metallomics 4, 561 (2012)CrossRefGoogle Scholar
  9. 9.
    N.J. Wheate, D.P. Buck, A.I. Day, J.G. Collins, Dalt. Trans. (2006).  https://doi.org/10.1039/B513197A Google Scholar
  10. 10.
    Y. Jin Jeon, S.-Y. Kim, Y. Ho Ko, S. Sakamoto, K. Yamaguchi, K. Kim, Org. Biomol. Chem. 3, 2122 (2005)CrossRefGoogle Scholar
  11. 11.
    Y. Chen, Z. Huang, H. Zhao, J.F. Xu, Z. Sun, X. Zhang, A.C.S. Appl, Mater. Interfaces 9, 8602 (2017)CrossRefGoogle Scholar
  12. 12.
    N.S. Venkataramanan, S. Ambigapathy, H. Mizuseki, Y. Kawazoe, J. Phys. Chem. B 116, 14029 (2012)CrossRefGoogle Scholar
  13. 13.
    N.J. Wheate, P.G.A. Kumar, A.M. Torres, J.R. Aldrich-Wright, W.S. Price, J. Phys. Chem. B 112, 2311 (2008)CrossRefGoogle Scholar
  14. 14.
    A.V. Chernyak, N.A. Slesarenko, V.I. Volkov, Appl. Magn. Reson. 50, 199 (2019).  https://doi.org/10.1007/s00723-018-1063-5 CrossRefGoogle Scholar
  15. 15.
    S. Chandrasekaran, I.V. Muthu, V. Enoch, J. Struct. Chem. 56, 1325 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Sharma, S. Obrai, R. Kumar, A. Kaur, M.S. Hundal, J. Struct. Chem. 56, 1379 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Day, A.P. Arnold, R.J. Blanch, B. Snushall, J. Org. Chem. 66, 8094 (2001)CrossRefGoogle Scholar
  18. 18.
    M.E. Bush, N.D. Bouley, A.R. Urbach, J. Am. Chem. Soc. 127, 14511 (2005)CrossRefGoogle Scholar
  19. 19.
    E.A. Kovalenko, D.A. Mainichev, Appl. Magn. Reson. 46, 281 (2015)CrossRefGoogle Scholar
  20. 20.
    E.A. Kovalenko, D.A. Mainichev, O.A. Gerasko, D.Y. Naumov, V.P. Fedin, Russ. Chem. Bull. 60, 841 (2011)CrossRefGoogle Scholar
  21. 21.
    R. Gust, B. Schnurr, Monatshefte für Chemie/Chem. Mon. 130, 637 (1999)Google Scholar
  22. 22.
    R.W. Hay, S. Miller, Polyhedron 17, 2337 (1998)CrossRefGoogle Scholar
  23. 23.
    A. Ciancetta, C. Coletti, A. Marrone, N. Re, Dalt. Trans. 41, 12960 (2012)CrossRefGoogle Scholar
  24. 24.
    U. Frey, J.D. Ranford, P.J. Sadler, Inorg. Chem. 32, 1333 (1993)CrossRefGoogle Scholar
  25. 25.
    M. Sooriyaarachchi, A. Narendran, J. Gailer, Metallomics 3, 49 (2011)CrossRefGoogle Scholar
  26. 26.
    L. Canovese, L. Cattalini, G. Chessa, M.L. Tobe, J. Chem. Soc. Dalt. Trans. (1988).  https://doi.org/10.1039/DT9880002135 Google Scholar
  27. 27.
    K.J. Barnham, M.I. Djuran, P.D.S. Murdoch, J.D. Ranford, P.J. Sadler, Inorg. Chem. 35, 1065 (1996)CrossRefGoogle Scholar
  28. 28.
    J. Kuduk-Jaworska, J.J. Jański, S. Roszak, J. Inorg. Biochem. 170, 148 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Irina Valerievna Mirzaeva
    • 1
    • 2
    Email author
  • Irina Valentinovna Andrienko
    • 1
  • Ekaterina Aleksandrovna Kovalenko
    • 1
  • Ekaterina Aleksandrovna Pashkina
    • 3
    • 4
  • Alina Aleksandrovna Aktanova
    • 4
  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Research Institute of Fundamental and Clinical ImmunologyNovosibirskRussia
  4. 4.Novosibirsk State Medical UniversityNovosibirskRussia

Personalised recommendations