Advertisement

EPR Characterization of the Light-Induced Negative Polaron in a Functionalized Dithienylthiazolo[5,4-d]thiazole Acceptor for Organic Photovoltaics

  • Melissa Van Landeghem
  • Julija Kudrjasova
  • Wouter Maes
  • Etienne Goovaerts
  • Sabine Van DoorslaerEmail author
Original Paper

Abstract

Functionalized 2,5-dithienylthiazolo[5,4-d]thiazole (DTTzTz) derivatives have attracted interest towards application as non-fullerene acceptors in solution-processed organic solar cells. Here, we present a combined high-field electron paramagnetic resonance and density functional theory study of the light-induced negative polaron on the novel acceptor 2,4-diCN-Ph-DTTzTz formed after charge transfer in bulk heterojunction blends with a donor polymer. Despite spectral overlap with the polymer cation, the g-anisotropy of the acceptor radical could be directly confirmed through detection of its unique 14N hyperfine couplings using electron–electron double resonance (ELDOR)-detected nuclear magnetic resonance (EDNMR) for spectral filtering. The spectral assignment is further underpinned by quantum-chemical calculations, which also provide detailed information about the spin density and charge distribution of the polaron in the DTTzTz acceptor.

Notes

Acknowledgements

The authors want to acknowledge the Research Foundation Flanders (FWO-Vlaanderen) for support of this work through the project G0B6715 N and the PhD fellowship of M. Van Landeghem.

Supplementary material

723_2019_1146_MOESM1_ESM.pdf (1012 kb)
Supplementary material 1 (PDF 1011 kb)

References

  1. 1.
    J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H.-L. Yip, T.-K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 3, 1140 (2019)CrossRefGoogle Scholar
  2. 2.
    J. Hou, O. Inganäs, R.H. Friend, F. Gao, Nat. Mater. 17, 119 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, J. Hou, Adv. Mater. 28, 4734 (2016)CrossRefGoogle Scholar
  4. 4.
    I. Osaka, R. Zhang, J. Liu, D.-M. Smilgies, T. Kowalewski, R.D. McCullough, Chem. Mater. 22, 4191 (2010)CrossRefGoogle Scholar
  5. 5.
    I. Osaka, R. Zhang, G. Sauvè, D.M. Smilgies, T. Kowalewski, R.D. McCullough, J. Am. Chem. Soc. 131, 2521 (2009)CrossRefGoogle Scholar
  6. 6.
    D. Naraso, F. Wudl, Macromolecules 41, 3169 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S. Ando, D. Kumaki, J.I. Nishida, H. Tada, Y. Inoue, S. Tokito, Y. Yamashita, J. Mater. Chem. 17, 553 (2007)CrossRefGoogle Scholar
  8. 8.
    J. Kudrjasova, R. Herckens, H. Penxten, P. Adriaensens, L. Lutsen, D. Vanderzande, W. Maes, Org. Biomol. Chem. 12, 4663 (2014)CrossRefGoogle Scholar
  9. 9.
    J. Kudrjasova, M. Van Landeghem, T. Vangerven, J. Kesters, G.H.L. Heintges, I. Cardinaletti, R. Lenaerts, H. Penxten, P. Adriaensens, L. Lutsen, D. Vanderzande, J. Manca, E. Goovaerts, W. Maes, ChemistrySelect 2, 1253 (2017)CrossRefGoogle Scholar
  10. 10.
    N. Nevil, Y. Ling, S. Van Mierloo, J. Kesters, F. Piersimoni, P. Adriaensens, L. Lutsen, D. Vanderzande, J. Manca, W. Maes, S. Van Doorslaer, E. Goovaerts, Phys. Chem. Chem. Phys. 14, 15774 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Van Landeghem, R. Lenaerts, J. Kesters, W. Maes, E. Goovaerts, unpubl. resultsGoogle Scholar
  12. 12.
    J. Niklas, O. G. Poluektov, Adv. Energy Mater. 1602226 (2017)Google Scholar
  13. 13.
    Y. Ling, S. Van Mierloo, A. Schnegg, M. Fehr, P. Adriaensens, L. Lutsen, D. Vanderzande, W. Maes, E. Goovaerts, S. Van Doorslaer, Phys. Chem. Chem. Phys. 16, 10032 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Niklas, K.L. Mardis, B.P. Banks, G.M. Grooms, A. Sperlich, V. Dyakonov, S. Beaupré, M. Leclerc, T. Xu, L. Yu, O.G. Poluektov, Phys. Chem. Chem. Phys. 15, 9562 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73 (2012)CrossRefGoogle Scholar
  17. 17.
    F. Neese, J. Chem. Phys. 115, 11080 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    F. Neese, J. Chem. Phys. 122, 044110 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    A. Schäfer, H. Horn, R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    V. Barone, in Recent Advances in Density Functional Methods, ed. by D. P. Chong (World Scientific, Singapore, 1995), Part 1, pp. 287–334Google Scholar
  23. 23.
    A. Aguirre, P. Gast, S. Orlinskii, I. Akimoto, E.J.J. Groenen, H. El-Mkami, E. Goovaerts, S. Van Doorslaer, Phys. Chem. Chem. Phys. 10, 7129 (2008)CrossRefGoogle Scholar
  24. 24.
    A. Nalepa, K. Möbius, W. Lubitz, A. Savitsky, J. Magn. Reson. 242, 203 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    M. Van Landeghem, W. Maes, E. Goovaerts, S. Van Doorslaer, J. Magn. Reson. 288, 1 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Experimental Condensed Matter PhysicsUniversity of AntwerpAntwerpBelgium
  2. 2.Design and Synthesis of Organic Semiconductors (DSOS), Institute for Materials Research (IMO-IMOMEC)Hasselt UniversityDiepenbeekBelgium
  3. 3.Imec, Associated Laboratory IMOMECDiepenbeekBelgium
  4. 4.Laboratory of Biophysics and Biomedical PhysicsUniversity of AntwerpAntwerpBelgium

Personalised recommendations