Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 9, pp 1067–1082 | Cite as

Hyperfine Interaction Promoted Intersystem Crossing

  • Yuri E. KandrashkinEmail author
Original Paper
  • 178 Downloads

Abstract

The mechanism of the intersystem crossing (ISC) in planar aromatic hydrocarbons is revised by considering hyperfine interaction promoted singlet–triplet transitions. The density matrix of the spin system of the metastable triplet state is derived. Extra terms including the electron-nuclear ordering, the ordering between the magnetic nuclei of the molecule, and the coherence between the nuclear spin sublevels are shown to be developed during the ISC. Several peculiarities of the spin system are predicted. The results are compared with the properties generated by the optical nuclear polarization. The proposed mechanism is examined by a qualitative analysis of the available experimental data on photoexcited pentacene in p-terphenyl.

Notes

Acknowledgements

The author wishes to thank Prof. Art van der Est for valuable discussion and critical reading of the manuscript.

References

  1. 1.
    S.P. McGlynn, T. Azumi, M. Kinoshita, Molecular Spectroscopy of the Triplet State (Prentice-Hall Inc, Englewood Cliffs, 1969)Google Scholar
  2. 2.
    H.F. Hameka, L.J. Oosterhoff, Mol. Phys. 1, 358 (1958)ADSCrossRefGoogle Scholar
  3. 3.
    L. Goodman, V.G. Krishna, Rev. Mod. Phys. 35, 541 (1963)ADSCrossRefGoogle Scholar
  4. 4.
    D.S. McClure, J. Chem. Phys. 20, 682 (1952)ADSCrossRefGoogle Scholar
  5. 5.
    B.R. Henry, W. Siebrand, J. Chem. Phys. 54, 1072 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    S. Astilean, V. Chitta, A. Corval, R.J.D. Miller, H.P. Trommsdorff, Chem. Phys. Lett. 219, 95 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    Y.F. Pedash, O.V. Prezhdo, S.I. Kotelevskiy, V.V. Prezhdo, J. Mol. Struct. THEOCHEM 585, 49 (2002)CrossRefGoogle Scholar
  8. 8.
    A.J. Van Strien, J. Schmidt, Chem. Phys. Lett. 70, 513 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Sloop, H. Yu, T. Lin, S.I. Weissman, J. Chem. Phys. 75, 3746 (1981)ADSCrossRefGoogle Scholar
  10. 10.
    J. Köhler, Phys. Rep. 310, 261 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    J.D. Breeze, E. Salvadori, J. Sathian, N.M. Alford, C.W.M. Kay, Nature 555, 493 (2018)ADSCrossRefGoogle Scholar
  12. 12.
    T.-S. Lin, J. Chin. Chem. Soc. 65, 163 (2018)CrossRefGoogle Scholar
  13. 13.
    J. Wrachtrup, C. von Borczyskowski, J. Bernard, M. Orrit, R. Brown, Nature 363, 244 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    T. Yago, G. Link, G. Kothe, T.-S. Lin, J. Chem. Phys. 127, 114503 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    G. Kothe, T. Yago, J.U. Weidner, G. Link, M. Lukaschek, T.S. Lin, J. Phys. Chem. B 114, 14755 (2010)CrossRefGoogle Scholar
  16. 16.
    V. Kouskov, D.J. Sloop, S.B. Liu, T.S. Lin, J. Magn. Reson. Ser. A 117, 9 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    T.-C. Yang, D.J. Sloop, S.I. Weissman, T.-S. Lin, J. Chem. Phys. 113, 11194 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    T.-S. Lin, T.-C. Yang, D.J. Sloop, Chem. Phys. 422, 251 (2013)CrossRefGoogle Scholar
  19. 19.
    T.R. Eichhorn, M. Haag, B. Van Den Brandt, P. Hautle, W.T. Wenckebach, Chem. Phys. Lett. 555, 296 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    T.R.R. Eichhorn, N. Niketic, B. van den Brandt, U. Filges, T. Panzner, E. Rantsiou, W.T. Wenckebach, P. Hautle, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 754, 10 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    D. Stehlik, in Excited States, ed. by E.C. Lim (Elsevier, Amsterdam, 1977), pp. 203–303CrossRefGoogle Scholar
  22. 22.
    B.M. Goodson, Annu. Rep. NMR Spectrosc. 55, 299–323 (2005).  https://doi.org/10.1016/S0066-4103(04)55006-8 CrossRefGoogle Scholar
  23. 23.
    H. Sternlicht, H.M. McConnell, J. Chem. Phys. 33, 302 (1960)ADSCrossRefGoogle Scholar
  24. 24.
    L.I. Schiff, Quantum Mechanics, 3rd edn. (McCraw-Hill Book Company, New York, 1968)Google Scholar
  25. 25.
    H.M. McConnell, J. Strathdee, Mol. Phys. 2, 129 (1959)ADSCrossRefGoogle Scholar
  26. 26.
    A. Corval, C. Kryschi, S. Astilean, H.P. Trommsdorff, J. Phys. Chem. 98, 7376 (1994)CrossRefGoogle Scholar
  27. 27.
    B.R. Henry, W. Siebrand, J. Chem. Phys. 51, 2396 (1969)ADSCrossRefGoogle Scholar
  28. 28.
    W.S. Veeman, J.H. van der Waals, Mol. Phys. 18, 63 (1970)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Durand, A. Bloeß, A.M. van Oijen, J. Köhler, E.J.J. Groenen, J. Schmidt, Chem. Phys. Lett. 317, 232 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    V. Lawetz, G. Orlandi, W. Siebrand, J. Chem. Phys. 56, 4058 (1972)ADSCrossRefGoogle Scholar
  31. 31.
    P. Avouris, W.M. Gelbart, M.A. El-Sayed, Chem. Rev. 77, 793 (1977)CrossRefGoogle Scholar
  32. 32.
    A.C.J. Brouwer, E.J.J. Groenen, M.C. van Hemert, J. Schmidt, J. Phys. Chem. A 103, 8959 (1999)CrossRefGoogle Scholar
  33. 33.
    J.O. Williams, A.C. Jones, M.J. Davies, J. Chem. Soc. Faraday Trans. 2(79), 263 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Kazan Physical-Technical Institute, Russian Academy of SciencesKazanRussian Federation

Personalised recommendations