Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 4, pp 589–597 | Cite as

1H and 93Nb Solid-State NMR and IR Study of Acidity of Nanodisperse Nb2O5·nH2O

  • I. V. YakovlevEmail author
  • E. Papulovskiy
  • E. A. Paukshtis
  • V. M. Bondareva
  • A. V. Toktarev
  • V. I. Zaikovskii
  • O. B. Lapina
Original Paper
  • 56 Downloads

Abstract

Niobium oxide hydrate is a promising material for various heterogeneous catalytic processes due to its strong acidity and stability in aqueous medium. While different synthesis conditions may lead to various particle morphologies, the effect of morphology of Nb2O5·nH2O particles on their acidic properties is not fully understood yet. In this paper, we have successfully synthesized and characterized nanodisperse niobium oxide hydrate. Using infrared (IR) spectroscopy, we demonstrated that the sample exhibits strong Brønsted acidity close in strength to sulfuric acid. Furthermore, solid-state nuclear magnetic resonance (NMR) spectroscopy in combination with ab initio calculations gave additional insight into the nature of strong acidic sites and proved to be a useful tool for identification of acidic sites in Nb2O5·nH2O systems. Thus, we have shown that it is not necessary to follow difficult high-temperature solid-state processes or processes with ammonia, which often contaminates the material, to synthesize highly acidic nanodisperse Nb2O5·nH2O.

Notes

Acknowledgements

This work was conducted within the framework of the budget project for Boreskov Institute of Catalysis. The authors also acknowledge the financial support from Russian Foundation for Basic Research (RFBR, project № 17-03-00531). The Siberian Branch of the Russian Academy of Sciences (SB RAS) Siberian Supercomputer Center is gratefully acknowledged for providing supercomputer facilities. We also would like to thank Dr. D. F. Khabibulin for the help with 93Nb NMR, Dr. A. N. Salanov for the SEM micrographs and T. Ya. Efimenko for the nitrogen adsorption experiments.

Supplementary material

723_2019_1118_MOESM1_ESM.pdf (1.3 mb)
Supplementary material 1 (PDF 1303 kb)

References

  1. 1.
    K. Wilson, J.H. Clark, Pure Appl. Chem. 72(7), 1313–1319 (2000)CrossRefGoogle Scholar
  2. 2.
    J.H. Clark, Acc. Chem. Res. 35(9), 791–797 (2002)CrossRefGoogle Scholar
  3. 3.
    L. Rao, Resonance 12(10), 30–36 (2007)CrossRefGoogle Scholar
  4. 4.
    R.A. Sheldon, I.W. Arends, U. Hanefeld, Green Chemistry and Catalysis (Wiley-VCH, Weinheim, 2007), pp. 49–90CrossRefGoogle Scholar
  5. 5.
    W.F. Hölderich, J. Röseler, G. Heitmann, A.T. Liebens, Catal. Today 37(4), 353–366 (1997)CrossRefGoogle Scholar
  6. 6.
    K. Tanabe, Catal. Today 8(1), 1–11 (1990)CrossRefGoogle Scholar
  7. 7.
    K. Tanabe, S. Okazaki, Appl. Catal. A Gen. 133(2), 191–218 (1995)CrossRefGoogle Scholar
  8. 8.
    K. Tanabe, Catal. Today 78(1–4), 65–77 (2003)CrossRefGoogle Scholar
  9. 9.
    K. Nakajima, Y. Baba, R. Noma, M. Kitano, J.N. Kondo, S. Hayashi, M. Hara, J. Am. Chem. Soc. 133(12), 4224–4227 (2011)CrossRefGoogle Scholar
  10. 10.
    P. Carniti, A. Gervasini, S. Biella, A. Auroux, Chem. Mater. 17(24), 6128–6136 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Luisa Marin, G.L. Hallett-Tapley, S. Impellizzeri, C. Fasciani, S. Simoncelli, J.C. Netto-Ferreira, J.C. ScaianoCatal. Sci. Technol 4(9), 3044–3052 (2014)CrossRefGoogle Scholar
  12. 12.
    H.T. Kreissl, M.M.J. Li, Y.-K. Peng, K. Nakagawa, T.J.N. Hooper, J.V. Hanna, A. Shepherd, T.-S. Wu, Y.-L. Soo, S.C.E. Tsang, J. Am. Chem. Soc. 139(36), 12670–12680 (2017)CrossRefGoogle Scholar
  13. 13.
    P. Batamack, R. Vincent, J. Fraissard, Catal. Lett. 36(1–2), 81–86 (1996)CrossRefGoogle Scholar
  14. 14.
    Z.-J. Yang, Y.-F. Li, Q.-B. Wu, N. Ren, Y.-H. Zhang, Z.-P. Liu, Y. Tang, J. Catal. 280(2), 247–254 (2011)CrossRefGoogle Scholar
  15. 15.
    A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara, K. Domen, Energy Environ. Sci. 3(1), 82–93 (2010)CrossRefGoogle Scholar
  16. 16.
    M. Renzhi, S. Takayoshi, Adv. Mater. 22(45), 5082–5104 (2010)CrossRefGoogle Scholar
  17. 17.
    W. Fan, Q. Zhang, W. Deng, Y. Wang, Chem. Mater. 25(16), 3277–3287 (2013)CrossRefGoogle Scholar
  18. 18.
    T. Fuchigami, K.-I. Kakimoto, J. Mater. Res. 32(17), 3326–3332 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson, M.C. Payne, Zeitschrift für Krist. 220(5/6), 567–570 (2005)ADSGoogle Scholar
  20. 20.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46(11), 6671–6687 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    D. Vanderbilt, Phys. Rev. B 41(11), 7892–7895 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    J. Yates, C. Pickard, F. Mauri, Phys. Rev. B 76(2), 24401 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    R.H. Byrd, J. Nocedal, R.B. Schnabel, Math. Program. 63(1–3), 129–156 (1994)CrossRefGoogle Scholar
  24. 24.
    M. Gasperin, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 38(7), 2024–2026 (1982)CrossRefGoogle Scholar
  25. 25.
    C.J. Pickard, F. Mauri, M. Ernzerhof, Phys. Rev. B 63(24), 245101-1–245101-13 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865–3868 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    M.I. Zaki, M.A. Hasan, F.A. Al-Sagheer, L. Pasupulety, Colloids Surfaces A Physicochem. Eng. Asp. 190(3), 261–274 (2001)CrossRefGoogle Scholar
  28. 28.
    L.H. Little, Infrared Spectra of Adsorbed Species (Academic Press, New York, 1966)Google Scholar
  29. 29.
    G. Czjzek, J. Fink, F. Götz, H. Schmidt, J. Coey, J.-P. Rebouillat, A. Liénard, Phys. Rev. B 23(6), 2513–2530 (1981)ADSCrossRefGoogle Scholar
  30. 30.
    O.B. Lapina, D.F. Khabibulin, K.V. Romanenko, Z. Gan, M.G. Zuev, V.N. Krasil’nikov VN, V.E. Fedorov, Solid State Nucl. Magn. Reson. 28(2–4), 204–224 (2005)CrossRefGoogle Scholar
  31. 31.
    O.B. Lapina, D.F. Khabibulin, A.A. Shubin, V.V. Terskikh, Prog. Nucl. Magn. Reson. Spectrosc. 53(3), 128–191 (2008)CrossRefGoogle Scholar
  32. 32.
    E. Papulovskiy, A.A. Shubin, V.V. Terskikh, C.J. Pickard, O.B. Lapina, Phys. Chem. Chem. Phys. 15(14), 5115–5131 (2013)CrossRefGoogle Scholar
  33. 33.
    Y. Koito, G.J. Rees, J.V. Hanna, M.M.J. Li, Y.K. Peng, T. Puchtler, R. Taylor, T. Wang, H. Kobayashi, I.F. Teixeira, M.A. Khan, H.T. Kreissl, S.C.E. Tsang, ChemCatChem 9(1), 144–154 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Takagaki, D. Lu, J.N. Kondo, M. Hara, S. Hayashi, K. Domen, Chem. Mater. 17(10), 2487–2489 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Boreskov Institute of Catalysis SB RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations