Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 4, pp 553–561 | Cite as

Spin–Lattice Relaxation and Diffusion Processes in Aqueous Solutions of Gadolinium-Based Upconverting Nanoparticles at Different Magnetic Fields

  • Kristina KristinaityteEmail author
  • Tomasz Zalewski
  • Marek Kempka
  • Simas Sakirzanovas
  • Dovile Baziulyte-Paulaviciene
  • Stefan Jurga
  • Ricardas Rotomskis
  • Nomeda R. Valeviciene
Original Paper
  • 111 Downloads

Abstract

We investigated the influence of gadolinium (Gd)-based upconverting nanoparticles (UCNPs) on water spin–lattice relaxation (T1) and diffusion at different magnetic field strengths (0.4 T and 9.4 T). Our findings show that smaller NPs (12 nm compared to 19 nm) were more favourable for proton relaxivity. We also demonstrate that using simplified Solomon–Bloembergen–Morgan (SBM) model we can associate two measured diffusion coefficients with processes occurring near the surface of UCNPs and in bulk water. Using the relationship between relaxation and diffusion, we can estimate not only the total impact of NPs on relaxation of water molecules, but also the impact on relaxation of local water molecules, directly connected to paramagnetic Gd3+ ions in NPs. Different magnetic field strengths did not alter the spin–lattice relaxivity of NPs. This suggests that Gd-based UCNPs could be developed into high-performance multimodal magnetic resonance imaging contrast agents working over a broad range of imaging field strengths used in clinical routine.

Notes

Acknowledgements

One of us (K.K.) thanks for the hospitality of Prof. Dr. Stefan Jurga group in NanoBioMedical Center, Poznan, where the part of the experiments were carried out. Special thanks to Dr. Grzegorz Nowaczyk for the TEM measurements and Prof. Dr. Vytautas Balevicius and Laurynas Dagys for their help during the experiments and discussions.

References

  1. 1.
    S.C. Partridge, N. Nissan, H. Rahbar, A.E. Kitsch, E.E. Sigmund, JMRI 45, 337–355 (2017)CrossRefGoogle Scholar
  2. 2.
    A.M. Priola, S.M. Priola, D. Gned, E. Piacibello, D. Sardo, G. Parvis, D. Torti, F. Ardissone, A. Veltri, JMRI 44, 758–769 (2016)CrossRefGoogle Scholar
  3. 3.
    S. Verma, A. Rajesh, J.J. Fütterer, B. Turkbey, T.W.J. Scheenen, Y. Pang, P.L. Choyke, J. Kurhanewicz, AJR 194, 1414–1426 (2010)CrossRefGoogle Scholar
  4. 4.
    C.M. Rios, M.P. McAndrews, W. Logan, T. Krings, D. Lee, E. Widjaja. JMRI 44, 12–22 (2016)CrossRefGoogle Scholar
  5. 5.
    T.F. Budinger, M.D. Bird, L. Frydman, J.R. Long, T.H. Mareci, W.D. Rooney, B. Rosen, J.F. Schenck, V.D. Schepkin, A.D. Sherry, D.K. Sodickson, C.S. Springer, K.R. Thulborn, K. Ugurbil, L.L. Wald, Magn. Reson. Mater. Phy. 29, 617–639 (2016)CrossRefGoogle Scholar
  6. 6.
    P. Caravan, ChT Farrar, L. Frullano, R. Uppal, Contrast. Media Mol. Imaging 4(2), 89–100 (2009)Google Scholar
  7. 7.
    V. Jacques, S. Dumas, WCh. Sun, J.S. Troughton, M.T. Greenfield, P. Caravan, Invest. Radiol. 45(10), 613–624 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Rohrer, H. Bauer, J. Mintorovich, M. Requardt, H.J. Weinmann, Invest. Radiol. 40, 715–724 (2005)CrossRefGoogle Scholar
  9. 9.
    A.M. Panich, N.A. Sergeev, Appl. Magn. Reson. 49, 195–208 (2018)CrossRefGoogle Scholar
  10. 10.
    F.C.J.M. van Veggel, C. Dong, N.J.J. Johnson, J. Pichaandi. Nanoscale 4, 7309–7321 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    L. Dongdong, S. Qiyue, D. Yan, J. Jianqing, J. Rare Earths 32(11), 1032–1036 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Liu, Z. Gao, J. Zeng, Y. Hou, F. Fang, Y. Li, R. Qiao, L. Shen, H. Lei, W. Yang, M. Gao, ACS Nano 7(8), 7227–7240 (2013)CrossRefGoogle Scholar
  13. 13.
    G.A. Pereira, C.F.G.C. Geraldes, Ann. Magn. Reson. 6(1/2), 1–33 (2007)Google Scholar
  14. 14.
    R.D.A. Alvares, A. Gautam, R.S. Prosser, F.C.J.M. van Veggel, P.M. Macdonald, J. Phys. Chem. 121, 17552–17558 (2017)Google Scholar
  15. 15.
    V.C. Pierre,́ S.M. Harris, S.L. Pailloux. Acc. Chem. Res. 51, 342-351 (2018)Google Scholar
  16. 16.
    D. Ni, W. Bu, E.B. Ehlerding, W. Cai, J. Shi. Chem. Soc. Rev. 46, 7438–7468 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Baziulyte-Paulaviciene, V. Karabanovas, M. Stasys, G. Jarockyte, V. Poderys, S. Sakirzanovas, R. Rotomskis, Beilstein J. Nanotechnol. 8, 1815–1824 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Ding, D. Chen, S. Yin, Z. Ji, J. Zhong, Y. Ni, C. Lu, Z. Xu, Sci. Rep. 5(12745), 1–14 (2015)Google Scholar
  19. 19.
    E. Von Goldammer, H.G. Hertz, J. Phys. Chem. 74, 3734–3755 (1970)CrossRefGoogle Scholar
  20. 20.
    V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V.V. Frolov, A.V. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer, Berlin, 2014) p. 206Google Scholar
  21. 21.
    X.Y. Zheng, K. Zhao, J. Tang, X.Y. Wang, L.D. Li, N.X. Chen, Y.J. Wang, S. Shi, X. Zhang, S. Malaisamy, L.D. Sun, X. Wang, C. Chen, C.H. Yan, ACS Nano 11, 3642–3650 (2017)CrossRefGoogle Scholar
  22. 22.
    F. Chen, W. Bu, S. Zhang, X. Liu, J. Liu, H. Xing, Q. Xiao, L. Zhou, W. Peng, L. Wang, J. Shi, Adv. Funct. Mater. 21, 4285–4294 (2011)CrossRefGoogle Scholar
  23. 23.
    N.J. Johnson, S. He, V.A. Nguyen Huu, A. Almutairi, ACS Nano 10, 8299–8307 (2016)CrossRefGoogle Scholar
  24. 24.
    N.J.J. Johnson, W. Oakden, G.J. Stanisz, R.S. Prosser, F.C.J.M. van Veggel, Chem. Mater. 23, 3714–3722 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Hou, R. Qiao, F. Fang, X. Wang, C. Dong, K. Liu, C. Liu, Z. Liu, H. Lei, F. Wang, M. Gao, ACS Nano 7(1), 330–338 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Kristina Kristinaityte
    • 1
    Email author
  • Tomasz Zalewski
    • 2
  • Marek Kempka
    • 2
  • Simas Sakirzanovas
    • 3
  • Dovile Baziulyte-Paulaviciene
    • 3
  • Stefan Jurga
    • 2
  • Ricardas Rotomskis
    • 1
    • 5
  • Nomeda R. Valeviciene
    • 4
  1. 1.Faculty of PhysicsVilnius UniversityVilniusLithuania
  2. 2.NanoBioMedical CenterAdam Mickiewicz UniversityPoznanPoland
  3. 3.Faculty of Chemistry and GeosciencesVilnius UniversityVilniusLithuania
  4. 4.Faculty of MedicineVilnius UniversityVilniusLithuania
  5. 5.Laboratory of Biomedical PhysicsNational Cancer InstituteVilniusLithuania

Personalised recommendations