Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 469–477 | Cite as

The Local Environment near a Neodymium Ion Doped in Y2SiO5

  • Yu. E. KandrashkinEmail author
  • A. A. Sukhanov
  • V. F. Tarasov
Original Paper


The local environment of neodymium ions in a Y2SiO5 crystal is investigated. The distances between the unpaired electron on Nd3+ and the magnetic nuclei of nearby Y3+ ions are determined from the hyperfine interaction (HFI) parameters obtained from electron spin echo envelope modulation datasets. Available X-ray diffraction data from pure crystals allowed the calculation of distances between different ions thus providing estimations of HFI parameters for Nd-doped single crystals. The simultaneous comparison of HFI parameters and radius-vectors allows the local environment to be derived, and the degree of the distortion generated by impurity ions to be estimated. It is shown that the distances between the neighboring yttrium sites of the unaltered and doped crystals are consistent within 5% accuracy.



This work was done within the framework of fundamental research AAAA-A18-118030690040-8 of FRC Kazan Scientific Center of RAS. The doped Y2SiO5 crystal was grown and the ESEEM experiment on the Y2SiO5 crystal was performed with support of the Russian Science Foundation (project 16-12-00041). We wish to express our appreciation to Prof. Art van der Est for the appropriate comments and for the proposed corrections.

Compliance with Ethical Standards

Conflicts of interest

There are no conflicts to declare.


  1. 1.
    C.W. Thiel, T. Bottger, R.L. Cone, J. Lumin. 131, 353–361 (2011)CrossRefGoogle Scholar
  2. 2.
    G. Wolfowicz, H. Maier-Flaig, R. Marino, A. Ferrier, H. Vezin, J.J.L. Morton, P. Goldner, Phys. Rev. Lett. 114, 170503 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    B.A. Maksimov, Y.A. Kharitonov, V.V. Ilyukhin, N.V. Belov, Doklady Akademii Nauk SSSR 183, 1072–1075 (1968)Google Scholar
  4. 4.
    L.G. Rowan, E.L. Hahn, W.B. Mims, Phys. Rev. 137, A61–A71 (1965)ADSCrossRefGoogle Scholar
  5. 5.
    G.M. Zhidomirov, K.M. Salikhov, Theor. Exp. Chem. 4, 332–334 (1971)CrossRefGoogle Scholar
  6. 6.
    S.A. Dikanov, Y.D. Tsvetkov, Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy (CRC Press, Boca Raton, 1992)Google Scholar
  7. 7.
    A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University, Oxford, 2001)Google Scholar
  8. 8.
    J. McCracken, in Encyclopedia of Inorganic Chemistry, ed. by R.H. Crabtree (Wiley, Chichester, 2008).
  9. 9.
    S.A. Dzuba, D. Marsh, in Electron Paramagnetic Resonance, vol. 24, ed. by B.C. Gilbert, V. Chechik, D.M. Murphy (Royal Soc Chemistry, Cambridge, 2015), pp. 102–121Google Scholar
  10. 10.
    Y.E. Kandrashkin, Y.D. Zavartsev, S.A. Koutovoi, A.A. Sukhanov, Appl. Magn. Reson. (2018). CrossRefGoogle Scholar
  11. 11.
    R. Eremina, T. Gavrilova, I. Yatsyk, I. Fazlizhanov, R. Likerov, V. Shustov, Y. Zavartsev, A. Zagumennyi, S. Kutovoi, J. Magn. Magn. Mater. 440, 13–14 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    A.A. Sukhanov, R.F. Likerov, R.M. Eremina, I.V. Yatsyk, T.P. Gavrilova, V.F. Tarasov, Y.D. Zavartsev, S.A. Kutovoi, J. Magn. Reson. 295, 12–16 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    A.G. Maryasov, M.K. Bowman, Y.D. Tsvetkov, Appl. Magn. Reson. 23, 211–233 (2002)CrossRefGoogle Scholar
  14. 14.
    W.B. Mims, Phys. Rev. B 6, 3543–3545 (1972)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Yu. E. Kandrashkin
    • 1
    Email author
  • A. A. Sukhanov
    • 1
  • V. F. Tarasov
    • 1
  1. 1.Zavoisky Physical-Technical InstituteFRC Kazan Scientific Center of RASKazanRussia

Personalised recommendations