Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 4, pp 619–625 | Cite as

63,65Cu NQR Spectra and Spin–Lattice Relaxation in Thermoelectric CuAlO2

  • V. V. Ogloblichev
  • V. L. MatukhinEmail author
  • I. Yu. Arapova
  • C. V. Schmidt
  • R. R. Khusnutdinov
Original Paper
  • 97 Downloads

Abstract

The 63,65Cu nuclear quadrupole resonance spectra and spin–lattice relaxation rate (1/T1) have been measured in the semiconductor compound CuAlO2. The value of the nuclei quadrupole interaction constant QCC = 56.24(6) MHz (T = 298 K) has been obtained. The broad maximum has been found in the temperature dependence of 1/T1 in the low-temperature region (below 276 K). This maximum can be associated with the presence of energy levels in the forbidden band. The activation energy has been estimated in CuAlO2 [EA = 45(2) meV], assuming the activation character of the mobility of holes.

Notes

Acknowledgements

The research was carried out within the state assignment of the Federal Agency for Scientific Organizations Russia (theme “Spin” no. AAAA-A18-118020290104-2) and partially supported by the project of the Ural Branch of the Russian Academy of Sciences no. 18-10-2-37.

References

  1. 1.
    A.V. Dmitriev, I.P. Zvyagin, Phys. Usp. 53(8), 789 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Singh, Phys. Rev. B 77, 126 (2008)Google Scholar
  3. 3.
    A.N. Banerjee, R. Maity, P.K. Ghosh, K.K. Chttopadhyay, Thin Solid Films 474, 261 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    R.S. Abdullin, V.P. Kalchev, I.N. Penkov, Phys. Chem. Miner. 14(3), 258 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    W.W. Jr Warren, A. Rajabzadeh, T. Olheiser, J. Liu, J. Tate, M.K. Jayaraj, K.A. Vanaja, Solid State Nucl. Magn. Reson. 26, 209 (2004)CrossRefGoogle Scholar
  6. 6.
    V.L. Matukhin, I.H. Khabibullin, D.A. Shulgin, S.V. Schmidt, E.I. Terukov, Semiconductors 46(9), 1102 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), p. 599Google Scholar
  8. 8.
    V.L. Matukhin, D.A. Shulgin, S.V. Shmidt, E.I. Terukov, Semiconductors 48(6), 779 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    A.G. Zalazinskij, V.F. Balakirev, N.M. Chebotaev, G.I. Chufarov, Zhurn. Neorg. Khimii 14, 624 (1969)Google Scholar
  10. 10.
    Bruker. Almanac2005 (2005)Google Scholar
  11. 11.
    A.I. Pogoreltsev, S.V. Schmidt, A.N. Gavrilenko, D.A. Shulgin, B.V. Korzun, V.L. Matukhin, J. Appl. Spectrosc. 82(3), 411 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    J. Tate, H.L. Ju, J.C. Moon, A. Zakutayev, A.P. Richard, J. Russell, D.H. McIntyre, Phys. Rev. B 80, 165206 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Gippius, M. Baenitz, R.S. Okhotnikov, S. Johnsen, B. Iversen, A.V. Shevelkov, Appl. Magn. Reson. 45, 1237 (2014)CrossRefGoogle Scholar
  14. 14.
    T. Caldwell, A.P. Reyes, W.G. Moulton, P.L. Kuhns, M.J.R. Hoch, P. Schlottmann, Z. Fisk, Phys. Rev. B 75, 075106 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), p. 599Google Scholar
  16. 16.
    C.P. Slichter, Principles of Magnetic Resonance (Harper & Row, New York, 1963), p. 246Google Scholar
  17. 17.
    V.I. Chizhik, Y.S. Chernyshev, A.V. Donets, V. Frolov, A. Komolkin, M.G. Shelyapina, Magnetic Resonance and Its Applications (Springer, Berlin, 2014), p. 782CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • V. V. Ogloblichev
    • 1
  • V. L. Matukhin
    • 2
    Email author
  • I. Yu. Arapova
    • 1
  • C. V. Schmidt
    • 2
  • R. R. Khusnutdinov
    • 2
  1. 1.M.N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of SciencesYekaterinburgRussia
  2. 2.Kazan State Power Engineering UniversityKazanRussia

Personalised recommendations