Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 455–468 | Cite as

Photophysical Properties of Zinc Coproporphyrin I Tetraethyl Ester in Different Solvents Probed by TR EPR Spectroscopy

  • A. A. Sukhanov
  • V. S. Tyurin
  • I. K. Budnikova
  • V. K. VoronkovaEmail author
Original Paper
  • 61 Downloads

Abstract

The results of time-resolved electron paramagnetic resonance (TR EPR) of zinc complexes of coproporphyrin I tetraethyl ester (ZnCPP-1) in solvents: o-terphenyl and chloroform/isopropanol mixture on the time after the laser pulse photoexcitation have been presented. The TR EPR spectra of the ZnCPP-1 complex in o-terphenyl indicate the presence of only one type of the photoexcited triplet state, while in the solution of the chloroform/isopropanol, the TR EPR spectrum is a sum of two different triplet spectra. The triplet spectrum detected in o-terphenyl is described by the zero-field splitting (ZFS) parameters and the aaa/eee electron spin polarization (ESP) pattern characteristic of zinc porphyrin derivative triplets. This spectrum is assigned to the monomeric ZnCPP-1 complex. A new spectrum detected together with the monomer spectrum in the chloroform/isopropanol has a reverse ESP pattern. The new spectrum is especially clearly observed in the time interval of 1.4–3 μs after the laser pulse when the intensity of the spectrum from the monomer triplet is substantially reduced. In addition to the reverse ESP pattern, an increase in the ZFS parameters of the new spectrum is observed. The density functional theory (DFT) calculation of the monomer and dimer structures and their energies shows that the dimer formation is energetically favorable. On the basis of the TR EPR data and DFT calculation, we suppose that the ZnCPP-1 complex is dimerized in the solution of the chloroform and isopropanol mixture and the new spectrum is most likely assigned to the dimer.

Notes

Acknowledgements

We are grateful to Professor Kev Salikhov for his comments and useful discussion. This work was supported in part by the Russian Foundation for Basic Research (project no. 16-03-00586) and the Program of the Presidium of the Russian Academy of Sciences no. 5.

References

  1. 1.
    I.P. Beletskaya, V.S. Tyurin, A.Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 109, 1659–1713 (2009)CrossRefGoogle Scholar
  2. 2.
    C.M. Drain, A. Varotto, I. RadivojevicI, Chem. Rev. 109, 1630–1658 (2009)CrossRefGoogle Scholar
  3. 3.
    D. Gust, T.A. Moore, A.L. Moore, Acc. Chem. Res. 34, 40–41 (2001)CrossRefGoogle Scholar
  4. 4.
    D. Holten, D.F. Bocian, J.S. Lindsey, Acc. Chem. Res. 35(1), 57–69 (2002)CrossRefGoogle Scholar
  5. 5.
    D. Kim, A. Osuka, Acc. Chem. Res. 37(10), 735–745 (2004)CrossRefGoogle Scholar
  6. 6.
    N. Aratani, A. Osuka, H.S. Cho, D. Kim, J. Photochem. Photobiol. C Photochem. Rev. 3, 25–52 (2002)CrossRefGoogle Scholar
  7. 7.
    H. Meier, Angew. Chem. Int. Ed. 2009, 3911–3913 (2009)CrossRefGoogle Scholar
  8. 8.
    K. Sugiyasu, M. Takeuchi, Chem. Eur. J. 2009, 6350–6362 (2009)CrossRefGoogle Scholar
  9. 9.
    J.-H. Chou, M.E. Kosal, H.S. Nalwa, N.A. Rakow, K.S. Suslick, in Porphyrin Handbook/Applications: Past, Present and Future, vol. 6, ed. by K.M. Kadish, K.M. Smith, R. Guillard (Academic Press, San Diego, 2000), p. 41Google Scholar
  10. 10.
    A. Ambroise, C. Kirmaier, R.W. Wagner, R.S. Loewe, D.F. Bocian, D. Holten, J.S. Lindsey, J. Org. Chem. 67, 3811–3826 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Punidha, M. Ravikanth, Tetrahedron 64, 8016–8028 (2008)CrossRefGoogle Scholar
  12. 12.
    J.K. Molloy, O. Kotova, R.D. Peacock, T. Gunnlaugsson, Org. Biomol. Chem. 10, 314–322 (2012)CrossRefGoogle Scholar
  13. 13.
    Richard W. Wagner, Jonathan S. Lindsey, Jyoti Seth, Vaithianathan Palaniappan, David F. Bocian, J. Am. Chem. Soc. 118, 3996–3997 (1996)CrossRefGoogle Scholar
  14. 14.
    C. Schubert, J.T. Margraf, T. Clark, D.M. Guldi, Chem. Soc. Rev. 44, 988–998 (2015)CrossRefGoogle Scholar
  15. 15.
    S.S. Kim, S.I. Weissman, J. Magn. Reson. 24, 167 (1976)ADSGoogle Scholar
  16. 16.
    H. Levanon, J.R. Norris, Chem. Rev. 78, 175 (1978)CrossRefGoogle Scholar
  17. 17.
    S.R. Langhoff, E.R. Davidson, M. Gouterman, W.R. Leenstra, A.L. Kwiram, J. Chem. Phys. 62, 169–176 (1975)ADSCrossRefGoogle Scholar
  18. 18.
    A. Scherz, H. Levanon, J. Phys. Chem. 84, 324–336 (1980)CrossRefGoogle Scholar
  19. 19.
    O. Gonen, H. Levanon, J. Phys. Chem. 89(9), 1637–1643 (1985)CrossRefGoogle Scholar
  20. 20.
    O. Gonen, H. Levanon, J. Chem. Phys. 84, 4132 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    S.S. Kim, S.I. Weissman, Rev. Chem. Intermed. 3, 107 (1979)CrossRefGoogle Scholar
  22. 22.
    H. Murai, T. Imamura, K. Obi, J. Phys. Chem. 86, 3279 (1982)CrossRefGoogle Scholar
  23. 23.
    H. Murai, T. Imamura, K. Obi, Chem. Phys. Lett. 87, 295 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    M. Terazima, S. Yamauchi, N. Hirota, Chem. Phys. Lett. 98, 145 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    T.K. Chandrashekar, H. van Willigen, M.H. Ebersole, J. Phys. Chem. 88, 4326 (1984)CrossRefGoogle Scholar
  26. 26.
    K. Ishii, S. Yamauchi, Y. Ohba, M. Iwaizumi, I. Uchiyama, N. Hirota, K. Maruyama, A. Osuka, J. Phys. Chem. 98, 9431 (1994)CrossRefGoogle Scholar
  27. 27.
    K. Ishii, Y. Ohba, M. Iwaizumi, S. Yamauchi, J. Phys. Chem. 100, 3839 (1996)CrossRefGoogle Scholar
  28. 28.
    K. Ishii, T. Ishizaki, Y. Ohba, S. Karasawa, N. Koga, S. Yamauchi, Appl. Magn. Reson. 23, 377 (2003)CrossRefGoogle Scholar
  29. 29.
    P.J. Angiolillo, K. Susumu, H.T. Uyeda, V.S.Y. Lin, R. Shediac, M.J. Therien, Synth. Metals 116, 247–253 (2001)CrossRefGoogle Scholar
  30. 30.
    O.I. Gnezdilov, A.E. Maambetov, A.A. Obynochny, S.K.M. Salikhov, Appl. Magn. Reson. 25, 157–198 (2003)CrossRefGoogle Scholar
  31. 31.
    S. Yamauchi, Bull. Chem. Soc. Jpn. 77, 1255–1268 (2004)CrossRefGoogle Scholar
  32. 32.
    S. Yamauchi, M. Tanabe, K. Takahashi, I.S.M. Saiful, H. Matsuoka, Y. Ohba, Appl. Magn. Reson. 37, 317–323 (2010)CrossRefGoogle Scholar
  33. 33.
    S. Yamauchi, K. Takahashi, S.M. Saiful Islam, Y. Ohba, V. Tarasov, J. Phys. Chem. B. 114, 14559–14563 (2010)CrossRefGoogle Scholar
  34. 34.
    T.K. Chandrashekar, H. van Willigen, Chem. Phys. Lett. 106, 237–241 (1984)ADSCrossRefGoogle Scholar
  35. 35.
    P. Jagermann, M. Plato, K. Mobius, Mol. Phys. 78, 1057–1074 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    R. Shediac, M.H.B. Gray, H.T. Uyeda, R.C. Johnson, J.T. Hupp, P.J. Angiolillo, M.J. Therien, J. Am. Chem. Soc. 12(29), 7017–7033 (2000)CrossRefGoogle Scholar
  37. 37.
    C.E. Tait, P. Neuhaus, H.L. Anderson, ChR Timmel, J. Am. Chem. Soc. 137, 6670–6679 (2015)CrossRefGoogle Scholar
  38. 38.
    A.A. Sukhanov, L.I. Savostina, V.K. Voronkova, E.A. Mikhalitsyna, V.S. Tyurin, Appl. Magn. Reson. 47, 1295–1304 (2016)CrossRefGoogle Scholar
  39. 39.
    P.J. Angiolillo, V.S.-Y. Lin, J.M. Vanderkooi, M.J. Therien, J. Am. Chem. Soc. 117, 12514–12527 (1995)CrossRefGoogle Scholar
  40. 40.
    P.J. Angiolillo, H.T. Uyeda, T.V. Duncan, M.J. Therien, J. Phys. Chem. B 108, 11893–11903 (2004)CrossRefGoogle Scholar
  41. 41.
    Sabine Richert, Claudia E. Tait, Christiane R. Timmel, J. Magn. Reson. 280, 103–116 (2017)ADSCrossRefGoogle Scholar
  42. 42.
    A.A. Sukhanov, Y.E. Kandrashkin, V.K. Voronkova, V.S. Tyurin, Appl. Magn. Reson. 49, 239–253 (2018)CrossRefGoogle Scholar
  43. 43.
    S. Stoll, A. Schweiger, J. Magn. Reson. 178(1), 42–55 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993)ADSCrossRefGoogle Scholar
  45. 45.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37, 785–789 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision E.01 (Gaussian Inc, Wallingford CT, 2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Zavoisky Physical-Technical InstituteFRC Kazan Scientific Center of RASKazanRussian Federation
  2. 2.A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussian Federation
  3. 3.Kazan State Power Engineering UniversityKazanRussian Federation

Personalised recommendations