Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 415–423 | Cite as

Nuclear Magnetic Resonance and X-ray Reflectometry of Co/Cu Superlattices

  • S. A. ChuprakovEmail author
  • N. S. Bannikova
  • I. V. Blinov
  • T. P. Krinitsina
  • M. A. Milyaev
  • V. V. Popov
  • V. V. Ustinov
Original Paper
  • 50 Downloads

Abstract

The state of interfaces in Co/Cu superlattices with various thicknesses of non-magnetic Cu layers (tcu) has been studied by the methods of nuclear magnetic resonance (NMR) and X-ray reflectometry. The samples glass/Fe(5 nm)/[Co(1.5 nm)/Cu(tcu)]10/Cr(3 nm) were fabricated by the method of magnetron sputtering on glass substrates under constant current in the ULVAC MPS-4000-C6 device. The 59Co NMR spectra were taken in a local magnetic field in the frequency range of 90–240 MHz at 4.2 K in the pulsed NMR spectrometer. The spin echo signal was formed by a sequence of two coherent radio-frequency pulses (τp)x − tdel − (τp)y − tdel – echo forming an alternate magnetic field with the round component amplitude H1 of about 10 Oe in a resonance coil. It has been shown both by NMR and X-ray reflectometry that the structure of interfaces deteriorates with an increase of the Cu layers thickness, and similar dependences of the parameters characterizing structural imperfection of interfaces were obtained by these two methods.

Notes

Acknowledgements

The work has been done within the State Program “Spin” (No AAAA-A18-118020290104-2) and the Program of Fundamental Research of the Ural Branch of the Russian Academy of Sciences (Project No. 18–10–2–37).

References

  1. 1.
    K. Wetzig, C.M. Schneider, in Metal Based Thin Films for Electronics, (Wiley VCH, Weinheim, 2003), p. 388CrossRefGoogle Scholar
  2. 2.
    J.C. Mallinson, Magneto-Resistive and Spin Valve Heads: Fundamentals and Applications, 2nd edn. (Academic Press, San Diego, 2002)CrossRefGoogle Scholar
  3. 3.
    C.H. Marrows, N. Wiser, B.J. Hickey, T.P.A. Hase, B.K. Tanner, J. Phys. 11, 81–88 (1999)Google Scholar
  4. 4.
    M. Vopsaroiu, D. Bozec, J.A.D. Matthew, S.M. Thompson, C.H. Marrows, M. Perez, Phys. Rev. B 70, 214423-1–214423-7 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    D. Elefant, D. Tietjen, L. van Loyen, I. Moench, C.M. Schneider, J. Appl. Phys. 89, 7118–7120 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    E.E. Fullerton, I.K. Schuller, H. Vanderstraeten, Y. Bruynseraede, Phys. Rev. B 45, 9292 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    N.V. Kourtina, E.A. Kravtsov, V.V. Ustinov, J. Magn. Magn. Mater. 240, 494 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    C. Meny, P. Panissod, R. Loloee, Phys. Rev. B 45, 12269 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    T. Thomson, P.C. Riedi, Hyp. Interact. 120, 20 (1999)ADSGoogle Scholar
  10. 10.
    D. Khalyapin, V.K. Maltsev, P.D. Kim, I.A. Turpanov, A.Ya. Betenkova, J. Sib. Fed. Univ. 3, 70 (2010)Google Scholar
  11. 11.
    S.A. Chuprakov, T.P. Krinitsina, N.S. Bannikova, I.V. Blinov, S.V. Verkhovskii, M.A. Milyaev, V.V. Popov, V.V. Ustinov, Sol. State Phenom. 215, 358 (2014)CrossRefGoogle Scholar
  12. 12.
    S.A. Chuprakov, N.S. Bannikova, I.V. Blinov, T.P. Krinitsina, M.A. Milyaev, V.V. Popov, V.V. Ustinov, Phys. Met. Metallogr. 116, 136 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    H.A.M. Gronckel, K. Kopinga, W.J.M. Jonge, P. Panissod, J.P. Schille, F.J.A. Broeder, Phys. Rev. B 44, 9100 (1991)ADSCrossRefGoogle Scholar
  14. 14.
    E. Jedryka, M. Wojcik, S. Nadolski, D.J. Kubinski, H. Holloway, P. Panisod, J. Appl. Phys. 81, 4776 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    K. Dang, P. Veillet, H. He, F.J. Lamelas, C.H. Lee, R. Clarke, Phys. Rev. B 41, 12902 (1990)ADSCrossRefGoogle Scholar
  16. 16.
    M. Suzuki, Y. Taga, A. Goto, H. Yasuoka, Phys. Rev. B 50, 18580 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    Y. Saito, K. Inomata, K. Yusu, A. Goto, H. Yasuoka, Phys. Rev. B 52, 6500 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    S.A. Chuprakov, N.S. Bannikova, I.V. Blinov, T.P. Krinitsina, M.A. Milyaev, V.V. Popov, M.V. Ryabukhina, V.V. Ustinov, Phys. Met. Metallogr. 119, 309 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    ​S.S.P. Parkin, Z.G. Li, D.J. Smith, Appl. Phys. Lett. 58, 2710 (1991)ADSCrossRefGoogle Scholar
  20. 20.
    S. Heitmann. Ph.D. Thesis. University of Bielefeld; Bielefeld, Germany (2004)Google Scholar
  21. 21.
    Y. Saito, S. Hashimoto, K. Inomata, IEEE Trans. Magn. 28, 2751 (1992)ADSCrossRefGoogle Scholar
  22. 22.
    W. Kuch, A.C. Marley, S.S.P. Parkin, J. Appl. Phys. 83, 4709 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    M.R. Parker, S. Hossain, D. Seale, J.A. Barnard, M. Tan, H. Fujiwara, IEEE Trans. Magn. 30, 358 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    S. Nasu, H. Yasuoka, Y. Nakamura, Y. Murakami, Acta Metall. 22, 1057 (1974)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.M.N. Miheev Institute of Metal Physics, Ural Branch of RASYekaterinburgRussia

Personalised recommendations