Advertisement

The Metabolic Profile of Stable Ischemic Heart Disease by Serum 1H NMR

  • Tiina Titma
  • Min-Ji Shin
  • Christian Ludwig
  • Ulrich L. Günther
  • Marika Pikta
  • Galina Zemtsovskaja
  • Margus Viigimaa
  • Risto Tanner
  • Ago Samoson
Original Paper
  • 2 Downloads

Abstract

Ischemic heart disease (IHD) is the most common cause of death in the world. Metabolic profiling is an innovative and reliable new method to detect more sensitive biomarkers identifying altered health conditions specifically among the variety of patients with different risk factors. We evaluated the metabolic profile of filtered serum of stable IHD patients (ICD10 codes I20 and I25.2, ischemic heart disease without or with previous myocardial infarction respectively) using proton nuclear magnetic resonance spectroscopy (NMR). The filtered venous serum from age- and gender-matched stable IHD patients ICD10 coded I20 (n = 13), I25.2 (n = 6) and control individuals (n = 19) were analyzed using one-dimensional proton nuclear magnetic resonance (1H NMR) spectroscopy. These spectra were used for metabolic profiling and concentration calibration (Chenomx Inc.) followed by statistical analysis using one-way ANOVA and principal component analysis (PCA). Chemometrics analysis showed a significant distinction between the patients and control individuals. The stable IHD patients were exemplified by the increased concentration of acetylacetate, choline, betaine, formate, pyruvate and by the decreased concentration of alanine, creatine, glycine, histidine, lactate, proline, urea and other biomolecules. The major implications found in the serum of IHD patients are related to energy metabolism and potentially altered microbiome. PCA of 1H NMR detected serum metabolites exhibit a significant difference of stable IHD patients and control individuals. These data demonstrate that metabolomics approach may be useful for the early detection of stable IHD, for detection of synergistic pathways involved in the development of altered health conditions, and molecular understanding of particular health condition. The differences of the detected metabolic profile of ischemic patients with or without previous myocardial infarction appear to be minor. This relatively inexpensive, non-invasive and reproducible approach may be useful for the molecular understanding and early prevention of IHD, improvement of surveillance and therapy. The study emerges the need for future investigations using larger cohort and possible longitudinal sight.

Notes

Acknowledgements

This work was supported by the FP7 Bio-NMR program, European Regional Development Fund and European Social Fund’s Doctoral Studies and Internationalisation Programme DoRa and the Estonian Research Council Grant PUT 1534. Thanks to the Bio-NMR program for funding access to the Biomolecular NMR facility of the University of Birmingham.

Compliance with Ethical Standards

Conflict of Interest

The authors confirm that this article authorship or content has no conflict of interest.

References

  1. 1.
    GBD 2016 Causes of Death Collaborators, Lancet 390(10100), 1151–1210 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Garcia-Simon, J.M. Morales, V. Modesto-Alapont, V. Gonzalez-Marrachelli, R. Vento-Rehues, A. Jorda-Miñana, J. Blanquer-Olivas, D. Monleon, PLoS One 10(11), e0140993 (2015)CrossRefGoogle Scholar
  3. 3.
    H. Huang, Z. Sun, H. Pan, M. Chen, Y. Tong, J. Zhang, D. Chen, X. Su, L. Li, Sci. Rep. 6, 30853 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Du, A. Shen, Y. Huang, L. Su, W. Lai, P. Wang, Z. Xie, Z. Xie, Q. Zeng, H. Ren, D. Xu, PLoS One 9(2), e88102 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    X. Liu, J. Gao, J. Chen, Z. Wang, Q. Shi, H. Man, S. Guo, Y. Wang, Z. Li, W. Wang, Sci. Rep. 6, 30785 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    U.L. Günther, Pathobiology 82, 153–165 (2015)CrossRefGoogle Scholar
  7. 7.
    L.C. Heather, X. Wang, J.A. West, J.L. Griffin, J. Mol. Cell. Cardiol. 55, 2–11 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Marcinkiewicz-Siemion, M. Ciborowski, A. Kretowski, W.J. Musial, K.A. Kaminski, Int. J. Cardiol. 219, 156–163 (2016)CrossRefGoogle Scholar
  9. 9.
    M. Chong, A. Jayaraman, S. Marin, V. Selivanov, P.R. de Atauri Carulla, D.A. Tennant, M. Cascante, U.L. Günther, C. Ludwig, Angew. Chem. Int. Ed. Engl. 56(15), 4140–4144 (2017)CrossRefGoogle Scholar
  10. 10.
    J.M. Lamley, D. Iuga, C. Öster, H.J. Sass, M. Rogowski, A. Oss, J. Past, A. Reinhold, S. Grzesiek, A. Samoson, J.R. Lewandowski, J. Am. Chem. Soc. 136(48), 16800–16806 (2014)CrossRefGoogle Scholar
  11. 11.
    V. Agarwal, S. Penzel, K. Szekely, R. Cadalbert, E. Testori, A. Oss, J. Past, A. Samoson, M. Ernst, A. Böckmann, B.H. Meier, Angew. Chem. Int. Ed. Engl. 53(45), 12253–12256 (2014)CrossRefGoogle Scholar
  12. 12.
    K. Ameta, A. Gupta, D. Ameta, R. Sethi, D. Kumar, I. Ahmad, A.A. Mahdi, Clin. Chim. Acta. 456, 56–62 (2016)CrossRefGoogle Scholar
  13. 13.
    V. Bodi, J. Sanchis, J.M. Morales, V.G. Marrachelli, J. Nunez, M.J. Forteza, F. Chaustre, C. Gomez, L. Mainar, G. Minana, E. Rumiz, O. Husser, I. Noguera, A. Diaz, D. Moratal, A. Carratala, X. Bosch, A. Llacer, F.J. Chorro, J.R. Viña, D. Monleon, JACC 59, 1629–1641 (2012)CrossRefGoogle Scholar
  14. 14.
    G.A.N. Gowda, Y.N. Gowda, N. Raftery, Anal. Chem. 87(1), 706–715 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Tiziani, A.H. Emwas, A. Lodi, C. Ludwig, C.M. Bunce, M.R. Viant, U.L. Günther, Anal. Biochem. 377(1), 16–23 (2008)CrossRefGoogle Scholar
  16. 16.
    D.S. Wishart, T. Jewison, A.C. Guo, M. Wilson, C. Knox, Y. Liu, Y. Djoumbou, R. Mandal, F. Aziat, E. Dong, S. Bouatra, I. Sinelnikov, D. Arndt, J. Xia, P. Liu, F. Yallou, T. Bjorndahl, R. Perez-Pineiro, R. Eisner, F. Allen, V. Neveu, R. Greiner, A. Scalbert, Nucleic Acids Res. 41(D1), D801–807 (2013)CrossRefGoogle Scholar
  17. 17.
    C. Ludwig, U. Günther, BMC Bioinformatics 12, 366–371 (2011)CrossRefGoogle Scholar
  18. 18.
    T. Metsalu, J. Vilo, Nucleic Acids Res. 43(W1), W566–570 (2015)CrossRefGoogle Scholar
  19. 19.
    M. Jensen-Urstad, M. Viigimaa, S. Sammul, H. Lenhoff, J. Johansson, Scand. J. Public Health 42(8), 780–785 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Johansson, M. Viigimaa, M. Jensen-Urstad, I. Krakau, L.O. Hansson, J. Intern. Med. 252(6), 551–560 (2002)CrossRefGoogle Scholar
  21. 21.
    H.M. Awwad, S.H. Kirsch, J. Geisel, R. Obeid, J. Chromatogr. B Analyt. Technol. Biomed Life Sci. 957, 41–45 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Psychogios, D.D. Hau, J. Peng, A.C. Guo, R. Mandal, S. Bouatra, I. Sinelnikov, R. Krishnamurthy, R. Eisner, B. Gautam, N. Young, J. Xia, C. Knox, E. Dong, P. Huang, Z. Hollander, T.L. Pedersen, S.R. Smith, F. Bamforth, R. Greiner, B. McManus, J.W. Newman, T. Goodfriend, D.S. Wishart, PLoS One 6(2), e16957 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    G. Gowda, D. Raftery, Anal. Chem. 89(8), 4620–4627 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Nørrelund, H. Wiggers, M. Halbirk, J. Frystyk, A. Flyvbjerg, H.E. Bøtker, O. Schmitz, J.O. Jørgensen, J.S. Christiansen, N. Møller, J. Intern. Med. 260(1), 11–21 (2006)CrossRefGoogle Scholar
  25. 25.
    M. Stoller, C. Seiler, Curr. Cardiol. Rev. 10(1), 38–56 (2014)CrossRefGoogle Scholar
  26. 26.
    A.S. Levy, J.C.S. Chung, J.T. Kroetsch, J.W.E. Rush, Vasc. Health Risk Manag. 5, 1075–1087 (2009)Google Scholar
  27. 27.
  28. 28.
    A. Kimmoun, E. Novy, T. Auchet, N. Ducrocq, B. Levy, Crit. Care 19(1), 175 (2015)CrossRefGoogle Scholar
  29. 29.
    C. Bravo, R.K. Kudej, C. Yuan, S. Yoon, H. Ge, J.Y. Park, B. Tian, W.C. Stanley, S.F. Vatner, D.E. Vatner, L. Yan, J. Mol. Cell. Cardiol. 55, 19–26 (2013)CrossRefGoogle Scholar
  30. 30.
    W. Bernhard, M. Raith, R. Kunze, V. Koch, M. Heni, C. Maas, H. Abele, C.F. Poets, A.R. Franz, Eur. J. Nutr. 54(5), 733–741 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Roy, M. Dakroub, G.C. Tezini, Y. Liu, S. Guatimosim, Q. Feng, H.C. Salgado, V.F. Prado, M.A. Prado, R. Gros, FASEB J. 30(2), 688–701 (2016)CrossRefGoogle Scholar
  32. 32.
    O. Danne, M. Möckel, C. Lueders, C. Mügge, G.A. Zschunke, H. Lufft, C. Müller, U. Frei, Am. J. Cardiol. 91(9), 1060–1067 (2003)CrossRefGoogle Scholar
  33. 33.
    M.T. Velasquez, A. Ramezani, A. Manal, D.S. Raj, Toxins (Basel). (2016).  https://doi.org/10.3390/toxins8110326 CrossRefGoogle Scholar
  34. 34.
    Z. Wang, W.H. Tang, J.A. Buffa, X. Fu, E.B. Britt, R.A. Koeth, B.S. Levison, Y. Fan, Y. Wu, S. Hazen, Eur. Heart J. 35(14), 904–910 (2014)CrossRefGoogle Scholar
  35. 35.
    M. Lever, S. Slow, Clin. Biochem. 43(9), 732–744 (2010)CrossRefGoogle Scholar
  36. 36.
    E.P. Rhee, R.E. Gerszten, Clin. Chem. 58(1), 139–147 (2012).  https://doi.org/10.1373/clinchem.2011.169573 CrossRefGoogle Scholar
  37. 37.
    C.J. McEntyre, M. Lever, S.T. Chambers, P.M. George, S. Slow, J.L. Elmslie, C.M. Florkowski, H. Lunt, J.D. Krebs, Ann. Clin. Biochem. 52(Pt 3), 352–360 (2015)CrossRefGoogle Scholar
  38. 38.
    L. Herz, E. Herz, Neurochem. Int. 43(4–5), 355–361 (2003)CrossRefGoogle Scholar
  39. 39.
    Y. Wang, X. Luo, G.H. Zhang, S.L. Li, Genet. Mol. Res. (2016).  https://doi.org/10.4238/gmr.15027796 CrossRefGoogle Scholar
  40. 40.
    B.K. Ubhi, J.H. Riley, P.A. Shaw, D.A. Lomas, R. Tal-Singer, W. MacNee, J.L. Griffin, S.C. Connor, Eur. Respir. J. 40(2), 345–355 (2012)CrossRefGoogle Scholar
  41. 41.
    R. Schicho, R. Shaykhutdinov, J. Ngo, A. Nazyrova, C. Schneider, R. Panaccione, G.G. Kaplan, H.J. Vogel, M. Storr, J. Proteome Res. 11(6), 3344–3357 (2012)CrossRefGoogle Scholar
  42. 42.
    I.F. Duarte, A.M. Gil, Prog. Nucl. Magn. Reson. Spectrosc. 62, 51–74 (2012)CrossRefGoogle Scholar
  43. 43.
    A. Rawat., R.K. Srivastava, D. Dubey, A. Guleria, S. Singh, A. Prakash, D.R. Modi, C.L. Khetrapal, S. Tiwari, D. Kumar, Curr. Metab. 5(1), 55–67 (2016)CrossRefGoogle Scholar
  44. 44.
    V.R. Pell, E.T. Chouchani, C. Frezza, M.P. Murphy, T. Krieg, Cardiovasc. Res. 111(2), 134–141 (2016)CrossRefGoogle Scholar
  45. 45.
    H.J. Milionis, G.L. Liamis, M.S. Elisaf, CMAJ 166(8), 1056–1062 (2002)Google Scholar
  46. 46.
    D. Osman, O. Ali, M. Obada, H. El-Mezayen, H. El-Said, Biomed Chromatogr. 31(6), e3893 (2017).  https://doi.org/10.1002/bmc.3893 CrossRefGoogle Scholar
  47. 47.
    E. Holmes, R.L. Loo, J. Stamler, M. Bictash, I.K.S. Yap, Q. Chan, T. Ebbels, M. De Iorio, I.J. Brown, K.A. Veselkov, M.L. Daviglus, H. Kesteloot, H. Ueshima, L. Zhao, J.K. Nicholson, P. Elliott, Nature 453(7193), 396–400 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    H.J. Lees, J.R. Swann, I.D. Wilson, J.K. Nicholson, E. Holmes, J. Proteome Res. 12, 1527–1546 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Health Technologies, School of Information TechnologiesTallinn University of TechnologyTallinnEstonia
  2. 2.Institute of Cancer and Genomic SciencesUniversity of BirminghamBirminghamUK
  3. 3.North Estonia Medical CentreTallinnEstonia
  4. 4.Department of PhysicsUniversity of WarwickCoventryUK

Personalised recommendations