Applied Magnetic Resonance

, Volume 49, Issue 12, pp 1397–1415 | Cite as

EPR and Magnetization Studies of Polymer-Derived Fe-Doped SiCN Nanoceramics Annealed at Various Temperatures: Blocking Temperature, Superparamagnetism and Size Distributions

  • Sushil K. MisraEmail author
  • Sergey Andronenko
  • Ildar Gilmutdinov
  • Roman Yusupov
Original Paper


X-band EPR spectra on SiCN ceramics, doped with Fe(III) ions, annealed at 800 °C, 1000 °C, 1100 °C, 1285 °C, and 1400 °C have been simulated to understand better their magnetic properties, accompanied by new magnetization measurements in the temperature range of 5–400 K for zero-field cooling (ZFC) and field cooling (FC) at 100C. The EPR spectra reveal the presence of several kinds of Fe-containing nanoparticles with different magnetic properties. The maxima of the temperature variation of ZFC magnetization were exploited to estimate (i) the blocking temperature, which decreased with annealing temperature of the samples and (ii) the distribution of the size of Fe-containing nanoparticles in the various samples, which was found to become more uniform with increasing annealing temperature, implying that more homogenous magnetic SiCN/Fe composites can be fabricated by annealing at even higher temperatures than 1400 °C to be used as sensors. The hysteresis curves showed different behaviors above (superparamagnetic), below (ferromagnetic), and about (butterfly shape) the respective average blocking temperatures, 〈TB〉. An analysis of the coercive field dependence upon temperature reveals that it follows Stoner–Wohlfarth model for the SiCN/Fe samples annealed above 1100 °C, from which the blocking temperatures was also deduced.



This research was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC; SKM); SIA is grateful to the Ministry of Education and Science of Russian Federation, for partial support in the frame of research project, allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (#3.2166.2017/4.6). The magnetic measurements were carried out at the Federal Center of Shared Facilities of Kazan Federal University. SIA acknowledges Prof. I. Stiharu’s interest in this research.


  1. 1.
    L.-A. Liew, R.A. Saravanan, V.M. Bright, M.L. Dunn, J.W. Daily, R. Raj, Sens. Actuators A 103, 171 (2003)CrossRefGoogle Scholar
  2. 2.
    L.-A. Liew, W. Zhang, V.M. Bright, L. An, M.L. Dunn, J.W. Daily, R. Raj, Sens. Actuators A 89, 64 (2001)CrossRefGoogle Scholar
  3. 3.
    L.-A. Liew, Y. Liu, R. Luo, T. Cross, L. An, V.M. Bright, M.L. Dunn, J.W. Daily, R. Raj, Sens. Actuators A 95, 120 (2002)CrossRefGoogle Scholar
  4. 4.
    B. Ma, Y. Cao, Y. Gao, Y. Wang, J. Alloy Compd. 732, 491 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Leo, S. Andronenko, I. Stiharu, R.B. Bhat, Sensors 10, 1338 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, X. Guo, Y. Feng, X. Lin, H. Gong, Ceram. Int. 43, 15551 (2017)CrossRefGoogle Scholar
  7. 7.
    X. Guo, Y. Feng, X. Lin, Y. Liu, H. Gong, Y. Zhang, J. Eur. Ceram. Soc. 38, 1327–1333 (2018)CrossRefGoogle Scholar
  8. 8.
    M.J. MacLachlan, M. Ginzburg, N. Coombs, T.W. Coyle, N.P. Raju, J.E. Greedan, G.A. Ozin, I. Manners, Science 287, 1460 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    A. Saha, S.R. Shah, R. Raj, S.E. Russek, J. Mater. Res. 18, 2549 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Li, Z. Zheng, C. Reng, Z. Zhang, W. Gao, S. Yang, Z. Xie, Appl. Organometal. Chem. 17, 120 (2003)CrossRefGoogle Scholar
  11. 11.
    A. Dumitru, V. Ciupina, I. Stamatin, G. Prodan, A. Morozan, C. Mirea, J. Optoelectron. Adv. Mater. 8, 50 (2006)Google Scholar
  12. 12.
    A. Dumitru, I. Stamatin, A. Morozan, C. Mirea, V. Ciupina, Mater. Sci. Eng. C 27, 1331 (2007)CrossRefGoogle Scholar
  13. 13.
    J. Li, Z. Zhang, Z. Zheng, L. Guo, G. Xu, Z. Xie, J. Appl. Polym. Sci. 105, 1786 (2007)CrossRefGoogle Scholar
  14. 14.
    J.H. Park, K.H. Park, D.P. Kim, J. Ind. Eng. Chem. 13, 27 (2007)Google Scholar
  15. 15.
    X. Yan, X.N. Cheng, C.S. Li, R. Hauser, R. Riedel, Mater. Sci. Forum 546–549, 2269 (2007)CrossRefGoogle Scholar
  16. 16.
    R. Hauser, A. Francis, R. Theismann, R. Riedel, J. Mater. Sci. 43, 4042 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    G. Singh, S. Priya, M.R. Hossu, S.R. Shah, S. Grover, A.R. Koymen, R.L. Mahajan, Mater. Lett. 63, 2435 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Francis, E. Ionescu, C. Fasel, R. Riedel, Inorg. Chem. 48, 10078 (2009)CrossRefGoogle Scholar
  19. 19.
    E. Ionescu, C. Terzioglu, C. Linck, J. Kaspar, A. Navrotsky, R. Riedel, J. Am. Ceram. Soc. 96, 4899 (2013)CrossRefGoogle Scholar
  20. 20.
    R. Mishra, R.K. Tiwari, A.K. Saxena, J. Inorg. Organomet. Polym. 19, 223 (2009)CrossRefGoogle Scholar
  21. 21.
    C. Zhou, L. Yang, H. Geng, Q. Zheng, H. Min, Zh Yu, H. Xia, Ceram. Int. 38, 6815 (2012)CrossRefGoogle Scholar
  22. 22.
    C. Vakifahmetoglu, E. Pippel, J. Woltersdorf, P. Colombo, J. Am. Ceram. Soc. 93, 959 (2010)CrossRefGoogle Scholar
  23. 23.
    M. Hojamberdiev, R.M. Prasad, C. Fasel, R. Riedel, E. Ionescu, Eur. J. Ceram. Soc. 33, 2465 (2013)CrossRefGoogle Scholar
  24. 24.
    M. Zaheer, T. Schmalz, G. Motz, R. Kempe, Chem. Soc. Rev. 41, 5102 (2012)CrossRefGoogle Scholar
  25. 25.
    G. Mera, M. Gallei, S. Bernard, E. Ionescu, Nanomaterials 5, 468 (2015)CrossRefGoogle Scholar
  26. 26.
    X. Yan, X. Cheng, G. Han, R. Hauser, R. Riedel, Key Eng. Mater. 353–358, 1485 (2007)CrossRefGoogle Scholar
  27. 27.
    S.I. Andronenko, I. Stiharu, S.K. Misra, C. Lacroix, D. Menard, Appl. Magn. Reson. 38, 385 (2010)CrossRefGoogle Scholar
  28. 28.
    E. Sawatzky, I.E.E.E. Trans. Magn. 7, 374 (1971)ADSCrossRefGoogle Scholar
  29. 29.
    Y.-L. Li, E. Kroke, R. Riedel, C. Fasel, C. Gervais, F. Babonneau, Appl. Organometal. Chem 15, 820 (2001)CrossRefGoogle Scholar
  30. 30.
    S. Trassl, G. Motz, E. Rossler, G. Ziegler, J. Am. Ceram. Soc. 85, 239 (2002)CrossRefGoogle Scholar
  31. 31.
    S. Trassl, H.-J. Kleebe, H. Stormer, G. Motz, E. Rossler, G. Ziegler, J. Am. Ceram. Soc. 85, 1268 (2002)CrossRefGoogle Scholar
  32. 32.
    S.I. Andronenko, I. Stiharu, S.K. Misra, J. Appl. Phys. 99, 113907 (2006)ADSCrossRefGoogle Scholar
  33. 33.
    E. Tomasella, F. Rebib, M. Dubois, J. Cellier, M. Jacquet, J. Phys: Conf. Ser. 100, 082045 (2008)Google Scholar
  34. 34.
    E. Tomasella, L. Spinelle, A. Bousquet, F. Rebib, M. Dubois, C. Eypert, J.P. Gaston, J. Cellier, Plasma Process. Polym. 6, S11 (2009)CrossRefGoogle Scholar
  35. 35.
    D. Bahloul, M. Pereira, C. Gerardin, J. Mater. Chem. 7, 109 (1997)CrossRefGoogle Scholar
  36. 36.
    M. Mukaida, I. Hiyama, T. Tsunoda, Y. Imai, in Proceedings of 17th International Conference on Thermoelectrics, ICT 98 (Nagoya Japan, 24-28 May 1998) pp. 237-240Google Scholar
  37. 37.
    J. Kliava, R. Berger, J. Magn. Magn. Mater. 205, 328 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    M.K. Kolel-Veetil, T.M. Keller, Materials 3, 1049 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    E.P. Yelsukov, A.N. Maratkanova, S.F. Lomayeva, G.N. Konyagin, O.M. Nemtsova, A.I. Ul’yanov, A.A. Chulkina, J. Alloys Comp. 407, 98 (2006)CrossRefGoogle Scholar
  40. 40.
    C.P. Bean, J.D. Livingston, J. Appl. Phys. 30, S120 (1959)ADSCrossRefGoogle Scholar
  41. 41.
    M. Knobel, W.C. Nunes, L.M. Socolovsky, E. De Biasi, J.M. Vargas, J.C. Denardin, J. Nanosci. Nanotech. 8, 2836 (2008)CrossRefGoogle Scholar
  42. 42.
    R. Sappey, E. Vincent, N. Hadacek, F. Chaput, J.P. Boilot, D. Zins, Phys. Rev. B 56, 14551 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    M. Respaud, J.M. Broto, H. Rakoto, A.R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T.O. Ely, C. Amiens, B. Chaudret, Phys. Rev. B 57, 2925 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    N.A. Usov, J. Appl. Phys. 109, 023913 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    N.A. Usov, YuB Grebenshchikov, J. Appl. Phys. 106, 023917 (2010)ADSCrossRefGoogle Scholar
  46. 46.
    P. de la Presa, Y. Luengo, V. Velasco, M.P. Morales, M. Iglesias, S. Veintemillas-Verdaguer, P. Crespo, A. Hernando, J. Phys. Chem. C 119, 11022 (2015)CrossRefGoogle Scholar
  47. 47.
    S. Sankar, A.E. Berkowitz, D. Dender, J.A. Borchers, R.W. Erwin, S.R. Kline, D.J. Smith, J. Magn. Magn. Mater. 221, 1 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    C. Schmitz-Antoniak, Rep. Progr. Phys. 78, 062501 (2015)ADSCrossRefGoogle Scholar
  49. 49.
    F. Tournus, A. Tamion, J. Magn. Magn. Mater. 323, 1118 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    H. Mamiya, I. Nakatani, T. Furubayashi, M. Ohnuma, Trans. Magn. Soc. Jpn. 2, 36 (2002)CrossRefGoogle Scholar
  51. 51.
    M.F. Hansen, S. Mørup, J. Magn. Magn. Mater. 203, 214 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    I.J. Bruvera, P.M. Zélis, M.P. Calatayud, G.F. Goya, F.H. Sánchez, J. Appl. Phys. 118, 184304 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    E.S. Stoner, E.P. Wohlfarth, Phil. Trans. R. Soc. A 240, 599 (1949)ADSCrossRefGoogle Scholar
  54. 54.
    W.C. Nunes, W.S.D. Folly, J.P. Sinnecker, M.A. Novak, Phys. Rev. B 70, 014419 (2004)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsConcordia UniversityMontrealCanada
  2. 2.Institute of PhysicsKazan Federal UniversityKazanRussian Federation

Personalised recommendations