Applied Magnetic Resonance

, Volume 50, Issue 4, pp 579–588 | Cite as

Influence of Morphology of LaF3 Nano-crystals on Fluorine Dynamics Studied by NMR Diffusometry

  • L. B. GulinaEmail author
  • M. Schikora
  • A. F. PrivalovEmail author
  • M. Weigler
  • V. P. Tolstoy
  • I. V. Murin
  • M. Vogel
Original Paper


Ionic dynamics in nano-structured 2D superionic conductors LaF3 obtained by a synthesis at the gas–solution interface has been analyzed using 19F NMR Static Field Gradient (SFG) diffusometry in a temperature range up to 800 K. The fluorine diffusion in 2D materials is significantly higher as compared to that in bulk LaF3 and is strongly dependent on the nano-crystalline sheet thickness. Its decrease from 18 nm to 6 nm leads to an increase of mobility by almost two orders of magnitude, resulting in an overall mobility enhancement of more than three orders of magnitude compared to mono-crystalline LaF3. Moreover, the activation energy is reduced from 1.2 eV for mono-crystals to 0.23 eV for 6 nm thin nano-crystalline powder samples.



The reported study was supported by a grant of the Russian Science Foundation, research project No 16-13-10223. The XRD research was carried out in the X-ray Diffraction Centre of SPbSU. The SEM study was carried out by the Nanotechnology Centre of SPbSU.


  1. 1.
    V. Trnovcová, L.S. Garashina, A. Škubla, P.P. Fedorov, R. Čička, E.A. Krivandina, B.P. Sobolev, Solid State Ionics 157, 195 (2003)CrossRefGoogle Scholar
  2. 2.
    A.F. Privalov, I.V. Murin, H.M. Vieth, Ionics 2, 319 (1996)CrossRefGoogle Scholar
  3. 3.
    A.F. Privalov, I.V. Murin, Phys. Solid State 41, 1482 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    N. Miura, J. Hisamoto, N. Yamazoe, S. Kuwata, J. Salardenne, Sens. Actuators 16, 301 (1989)CrossRefGoogle Scholar
  5. 5.
    S. Sivakumar, F.C.J.M. Van Veggel, M. Raudsepp, J. Am. Chem. Soc. 127, 12464 (2005)CrossRefGoogle Scholar
  6. 6.
    L.B. Gulina, V.P. Tolstoy, I.A. Kasatkin, I.E. Kolesnikov, D.V. Danilov, J. Fluorine Chem. 200, 18 (2017)CrossRefGoogle Scholar
  7. 7.
    P.R. Diamente, R.D. Burke, F.C.J.M. Van Veggel, Langmuir 22, 1782 (2006)CrossRefGoogle Scholar
  8. 8.
    V. Trnovcová, P.P. Fedorov, I. Furár, J. Rare Earths 26, 225 (2008)CrossRefGoogle Scholar
  9. 9.
    J. Maier, Chem. Mater. 26, 348 (2014)CrossRefGoogle Scholar
  10. 10.
    A.V. Chadwick, S.L.P. Savin, Solid State Ionics 177, 3001 (2006)CrossRefGoogle Scholar
  11. 11.
    V.P. Tolstoy, L.B. Gulina, Langmuir 30, 8366 (2014)CrossRefGoogle Scholar
  12. 12.
    L.B. Gulina, V.P. Tolstoy, I.A. Kasatkin, I.V. Murin, CrystEngComm 19, 5412 (2017)CrossRefGoogle Scholar
  13. 13.
    V.P. Tolstoy, L.B. Gulina, J. Nano- Electron. Phys. 5, 01003 (2013)Google Scholar
  14. 14.
    L.B. Gulina, V.P. Tolstoy, I.A. Kasatkin, Y.V. Petrov, J. Fluorine Chem. 180, 117 (2015)CrossRefGoogle Scholar
  15. 15.
    L.B. Gulina, V.P. Tolstoy, Russ. J. Gen. Chem. 84, 1472 (2014)CrossRefGoogle Scholar
  16. 16.
    L.B. Gulina, M. Schäfer, A.F. Privalov, V.P. Tolstoy, I.V. Murin, J. Chem. Phys. 143, 234702 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    L.B. Gulinaa, M. Schäf, A.F. Privalov, V.P. Tolstoy, I.V. Murin, M. Vogel J. Fluorine. Chemistry 188, 185 (2016)Google Scholar
  18. 18.
    S.J. Gregg, K.S. Sing, Adsorption, Surface Area and Porosity, 2nd edn. (Academic Press, London, 1982), pp. 30–38Google Scholar
  19. 19.
    A.F. Privalov, O. Lips, Appl. Magn. Reson. 22, 597 (2002)CrossRefGoogle Scholar
  20. 20.
    O. Amano, A. Sasahira, Y. Kani, K. Hoshino, M. Aoi, F. Kawamura, J. Nucl. Sci. Technol. 41, 55 (2004)CrossRefGoogle Scholar
  21. 21.
    I. Chang, F. Fujara, B. Geil, G. Hinze, H. Sillescu, A. Tölle, J. Non-Cryst, Solid 172–174, 674 (1994)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of ChemistrySaint Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institut für FestkörperphysikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations