Advertisement

Applied Magnetic Resonance

, Volume 50, Issue 1–3, pp 347–356 | Cite as

Study of Aliphatic Polyurethanes by the Low-Field 1H NMR Relaxometry Method with the Inversion of the Integral Transformation

  • J. Kucinska-Lipka
  • Nikolay SinyavskyEmail author
  • I. Mershiev
  • G. Kupriyanova
  • J. Haponiuk
Original Paper
  • 34 Downloads

Abstract

In this paper, the distributions of the 1H nuclear magnetic resonance (NMR) spin–lattice and spin–spin relaxation times are used to characterize the mobility of different sections of macromolecules of aliphatic polyurethanes and the cross-linking density of polymer chains. The NMR relaxometry method with inversion of integral transformation is applied to study the effect of poly (ethylene glycol) and glycerol phosphate calcium on the polymer dynamics.

Notes

Acknowledgements

N. S. thanks the Russian Foundation for Basic Research (RFBR, project no. 18-03-00089a) for the financial support.

References

  1. 1.
    M. Szycher, Szycher’s Handbook of Polyurethanes (Taylor & Francis Group, Routledge, 2017), p. 1144Google Scholar
  2. 2.
    N.M.K. Lamba, Polyurethanes in Biomedical Applications (Taylor & Francis Group, Routledge, 2017), p. 288CrossRefGoogle Scholar
  3. 3.
    J. Kucinska-Lipka, I. Gubanska, O. Korchynskyi, K. Malysheva, M. Kostrzewa, D. Włodarczyk, J. Karczewski, H. Janik, Polymers 9, 329 (2017)CrossRefGoogle Scholar
  4. 4.
    J. Kucinska-Lipka, I. Gubanska, H. Janik, M. Sienkiewicz, Mater. Sci. Eng. C 46, 166 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Kucinska-Lipka, I. Gubanska, M. Strankowski, H. Cieslinski, N. Filipowicz, H. Janik, Mater. Sci. Eng. C 75, 671 (2017)CrossRefGoogle Scholar
  6. 6.
    S. Meiboom, D. Gill, Rev. Sci. Instrum. 29, 688 (1958)ADSCrossRefGoogle Scholar
  7. 7.
    H. Zhu, H.P. Huinink, P.C.M.M. Magusin, O.C.G. Adan, K. Kopinga, J. Magn. Reson. 235, 109 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    A.V. Bogaychuk, I.G. Mershiev, N.Y. Sinyavsky, G.S. Kupriyanova, Rus. Phys. J. 61(4), 801 (2018)CrossRefGoogle Scholar
  9. 9.
    A.V. Bogaychuk, N.Y. Sinyavsky, G.S. Kupriyanova, Appl. Magn. Reson. 47(12), 1409 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Zhu, H.P. Huinink, O.C.G. Adan, K. Kopinga, Macromolecules 46(15), 6124 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    I.-G. Marino (2004) http://www.mathworks.com/matlabcentral/fileexchange/6523-rilt/content/rilt.m [Electronic resource]. Accessed 16 Sept 2018
  12. 12.
    S.W. Provencher, Comput. Phys. Commun. 27, 213 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    M.M. Coleman, D.J. Skrovanek, J. Hu, P.C. Painter, Macromolecules 21, 59 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    I. Yilgor, E. Yilgor, I.G. Guler, T.C. Ward, G.L. Wilkes, Polymer 47, 4105 (2006)CrossRefGoogle Scholar
  15. 15.
    V.M. Chernov, Nuclear magnetic relaxation and molecular motion in elastomers and lyotropic liquid crystals, Dissertation, Chelyabinsk State University, 2009Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Gdansk University of TechnologyGdańskPoland
  2. 2.Immanuel Kant Baltic Federal UniversityKaliningradRussia
  3. 3.Department of Physics and Chemistry, Baltic Fishing Fleet State AcademyKaliningrad State Technical UniversityKaliningradRussia

Personalised recommendations