Advertisement

Low-Temperature Dynamical Transition in Lipid Bilayers Detected by Spin-Label ESE Spectroscopy

  • Elena A. Golysheva
  • Marta De Zotti
  • Claudio Toniolo
  • Fernando Formaggio
  • Sergei A. Dzuba
Original Paper

Abstract

Data on neutron scattering in biological systems show low-temperature dynamical transition between 170 and 230 K manifesting itself as a drastic increase of the atomic mean-squared displacement, 〈x2〉, detected for hydrogen atoms in the nano- to picosecond time scale. For spin-labeled systems, electron spin echo (ESE) spectroscopy—a pulsed version of electron paramagnetic resonance—is also capable of detection of dynamical transition. A two-pulse ESE decay in frozen matrixes is induced by spin relaxation arising from stochastic molecular librations, and allows to obtain the 〈α2τc parameter, where 〈α2〉 is a mean-squared angular amplitude of the motion and τc is the correlation time lying in the sub- and nanosecond time ranges. In this work, the ESE technique was applied to spin-labeled amphiphilic molecules of three different kinds embedded in bilayers of fully saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and mono-unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Two-pulse ESE data revealed the appearance of stochastic librations above 130 K, with the parameter 〈α2τc obeying the Arrhenius type of temperature dependence and increasing remarkably above 170–180 K. A comparison with a dry sample suggests that onset of motions is not related with lipid internal motions. Three-pulse ESE experiments (resulting in stimulated echos) in DPPC bilayers showed the appearance of slow molecular rotations above 170–180 K. For D2O-hydrated bilayers, ESE envelope modulation experiments indicate that isotropic water molecular motions in the nearest hydration shell of the bilayer appear with a rate of ~ 105 s−1 in the narrow temperature range between 175 and 179 K. The similarity of the experimental data found for three different spin-labeled compounds suggests a cooperative character for the ESE-detected molecular motions. The data were interpreted within a model suggesting that dynamical transition is related with overcoming barriers, of 10–20 kJ/mol height, existing in the system for the molecular reorientations.

Notes

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, Project # 18-43-540004.

References

  1. 1.
    F.G. Parak, Curr. Opin. Struct. Biol. 13, 552–557 (2003)CrossRefGoogle Scholar
  2. 2.
    W. Doster, Biochim. Biophys. Acta Proteins Proteom. 1804, 3–14 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Khodadadi, A.P. Sokolov, Soft Matter 11, 4984–4998 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    G. Schiró, Biophys. Chem. 180–181, 29–36 (2013)CrossRefGoogle Scholar
  5. 5.
    J.H. Roh, V.N. Novikov, R.B. Gregory, J.E. Curtis, Z. Chowdhuri, A.P. Sokolov, Phys. Rev. Lett. 95, 038101 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    S.B. Kim, D.R. Gupta, P.G. Debenedetti, Sci. Rep. 6, 25612 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    N.V. Surovtsev, V.K. Malinovsky, E.V. Boldyreva, J. Chem. Phys. 134, 045102 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J.H. Roh, R.M. Briber, A. Damjanovic, D. Thirumalai, S.A. Woodson, A.P. Sokolov, Biophys. J. 96, 2755–2762 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    J. Fitter, R.E. Lechner, N.A. Dencher, J. Phys. Chem. 103, 8036–8050 (1999)CrossRefGoogle Scholar
  10. 10.
    K. Wood, M. Plazanet, F. Gabel, B. Kessler, D. Oesterhelt, G. Zaccai, M. Weik, Eur. Biophys. J. 37, 619–626 (2008)CrossRefGoogle Scholar
  11. 11.
    D.J. Tobias, N. Sengupta, M. Tarek, Faraday Discuss. 141, 99–116 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    A. Frölich, F. Gabel, M. Jasnin, U. Lehnert, D. Oesterhelt, A. Stadler, M. Tehei, M. Weik, K. Wood, G. Zaccai, Faraday Discuss. 141, 117–130 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    J. Peters, J. Marion, F. Natali, E. Kats, D.J. Bicout, J. Phys. Chem. B 121, 6860–6868 (2017)CrossRefGoogle Scholar
  14. 14.
    A. Tölle, Rep. Prog. Phys. 64, 1473–1532 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    M. Plazanet, H. Schober, Phys. Chem. Chem. Phys. 10, 5723–5729 (2008)CrossRefGoogle Scholar
  16. 16.
    E. Mamontov, V.K. Sharma, J.M. Borreguero, M. Tyagi, J. Phys. Chem. B 120, 3232–3239 (2016)CrossRefGoogle Scholar
  17. 17.
    S.-H. Chen, L. Liu, E. Fratini, P. Baglioni, A. Faraone, E. Mamontov, Proc. Natl. Acad. Sci. USA. 103, 9012–9016 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    J.H. Freed, G.K. Fraenkel, J. Chem. Phys. 39, 326–349 (1963)ADSCrossRefGoogle Scholar
  19. 19.
    J.H. Freed, G.V. Bruno, C.F. Polnaszek, J. Phys. Chem. 75, 3385–3399 (1971)CrossRefGoogle Scholar
  20. 20.
    S. Saxena, J.H. Freed, J. Phys. Chem. A 101, 7998–8008 (1997)CrossRefGoogle Scholar
  21. 21.
    J.H. Freed, Annu. Rev. Phys. Chem. 51, 655–689 (2000)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Polyhach, E. Bordignon, G. Jeschke, Phys. Chem. Chem. Phys. 13, 2356–2366 (2011)CrossRefGoogle Scholar
  23. 23.
    D. Marsh, Appl. Magn. Reson. 49, 97–106 (2018)CrossRefGoogle Scholar
  24. 24.
    A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)Google Scholar
  25. 25.
    S.A. Dzuba, E.P. Kirilina, E.S. Salnikov, J. Chem. Phys. 125, 054502 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    S.A. Dzuba, E.S. Salnikov, L.V. Kulik, Appl. Magn. Reson. 30, 637–650 (2006)CrossRefGoogle Scholar
  27. 27.
    R. Guzzi, R. Bartucci, M. Esmann, D. Marsh, Biophys. J. 108, 2825–2832 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    E. Aloi, M. Oranges, R. Guzzi, R. Bartucci, J. Phys. Chem. B 121, 9239–9246 (2017)CrossRefGoogle Scholar
  29. 29.
    E.A. Golysheva, G.Yu. Shevelev, S.A. Dzuba, J. Chem. Phys. 147, 064501 (2017)ADSCrossRefGoogle Scholar
  30. 30.
    R. Bartucci, R. Guzzi, M. De Zotti, C. Toniolo, L. Sportelli, D. Marsh, Biophys. J. 94, 2698–2705 (2008)CrossRefGoogle Scholar
  31. 31.
    I.V. Borovykh, P. Gast, S.A. Dzuba, Appl. Magn. Reson. 31, 159–166 (2007)CrossRefGoogle Scholar
  32. 32.
    E.P. Kirilina, S.A. Dzuba, A.G. Maryasov, Y.D. Tsvetkov, Appl. Magn. Reson. 21, 203–221 (2001)CrossRefGoogle Scholar
  33. 33.
    D.A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S.A. Dzuba, L. Sportelli, Biophys. J. 87, 3873–3881 (2004)CrossRefGoogle Scholar
  34. 34.
    N.P. Isaev, S.A. Dzuba, J. Phys. Chem. B 112, 13285–13291 (2008)CrossRefGoogle Scholar
  35. 35.
    S.A. Dzuba, E.P. Kirilina, E.S. Salnikov, L.V. Kulik, J. Chem. Phys. 122, 094702–094707 (2005)ADSCrossRefGoogle Scholar
  36. 36.
    V.N. Syryamina, A.G. Maryasov, M.K. Bowman, S.A. Dzuba, J. Magn. Reson. 261, 169–174 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    V.N. Syryamina, S.A. Dzuba, J. Phys. Chem. B 121, 1026–1032 (2017)CrossRefGoogle Scholar
  38. 38.
    N.V. Surovtsev, S.A. Dzuba, J. Phys. Chem. B 113, 15558–15562 (2009)CrossRefGoogle Scholar
  39. 39.
    N.V. Surovtsev, N.V. Ivanisenko, KYu. Kirillov, S.A. Dzuba, J. Phys. Chem. B 116, 8139–8144 (2012)CrossRefGoogle Scholar
  40. 40.
    C. Toniolo, M. Crisma, F. Formaggio, Biopolymers 47, 153–158 (1998)CrossRefGoogle Scholar
  41. 41.
    E.S. Salnikov, D.A. Erilov, A.D. Milov, Y.D. Tsvetkov, C. Peggion, F. Formaggio, C. Toniolo, J. Raap, S.A. Dzuba, Biophys. J. 91, 1532–1540 (2006)ADSCrossRefGoogle Scholar
  42. 42.
    V. Monaco, F. Formaggio, M. Crisma, C. Toniolo, P. Hanson, G. Millhauser, C. George, J.R. Deschamps, J.L. Flippen-Anderson, Bioorg. Med. Chem. 7, 119–131 (1991)CrossRefGoogle Scholar
  43. 43.
    D.A. Erilov, R. Bartucci, R. Guzzi, D. Marsh, S.A. Dzuba, L. Sportelli, J. Phys. Chem. B 108, 4501–4507 (2004)CrossRefGoogle Scholar
  44. 44.
    E.P. Kirilina, T.F. Prisner, M. Bennati, B. Endeward, S.A. Dzuba, M.R. Fuchs, K. Möbius, A. Schnegg, Magn. Reson. Chem. 43, S119–S129 (2005)CrossRefGoogle Scholar
  45. 45.
    N.P. Isaev, M.V. Fedin, S.A. Dzuba, Appl. Magn. Reson. 44, 133–142 (2013)CrossRefGoogle Scholar
  46. 46.
    K.B. Konov, N.P. Isaev, S.A. Dzuba, J. Phys. Chem. B 118, 12478–12485 (2014)CrossRefGoogle Scholar
  47. 47.
    A.D. Milov, R.I. Samoilova, A.A. Shubin, Y.A. Grishin, S.A. Dzuba, Appl. Magn. Reson. 35, 73–94 (2008)CrossRefGoogle Scholar
  48. 48.
    L. Hong, N. Smolin, B. Lindner, A.P. Sokolov, J.C. Smith, Phys. Rev. Lett. 107, 148102 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    L. Hong, D.C. Glass, J.D. Nickels, S. Perticaroli, Z. Yi, M. Tyagi, H. O’Neill, Q. Zhang, A.P. Sokolov, J.C. Smith, Phys. Rev. Lett. 110, 028104 (2013). (Erratum Phys. Rev. Lett. 110, 069901) ADSCrossRefGoogle Scholar
  50. 50.
    I.H. Roh, J.E. Curtis, S. Azzam, V.N. Novikov, I. Peral, Z. Chowdhuri, R.B. Gregory, A.P. Sokolov, Biophys. J. 91, 2573–2588 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    A. Benedetto, Biophys. Chem. 182, 16–22 (2013)CrossRefGoogle Scholar
  52. 52.
    E. Mamontov, H. O’Neill, Q. Zhang, J. Biol. Phys. 36, 291–297 (2010)CrossRefGoogle Scholar
  53. 53.
    N.P. Isaev, L.V. Kulik, I.A. Kirilyuk, V.A. Reznikov, I.A. Grigor’ev, S.A. Dzuba, J. Non Cryst. Solids 356, 1037–1042 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    D. Laage, T. Elsaesser, J.T. Hynes, Chem. Rev. 117, 10694–10725 (2017)CrossRefGoogle Scholar
  55. 55.
    E. Mamontov, X.-Q. Chu, Phys. Chem. Chem. Phys. 14, 11573–11588 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Chemical Kinetics and CombustionRussian Academy of SciencesNovosibirskRussian Federation
  2. 2.Department of PhysicsNovosibirsk State UniversityNovosibirskRussian Federation
  3. 3.Department of Chemical SciencesUniversity of PadovaPaduaItaly
  4. 4.Padova Unit, Institute of Biomolecular ChemistryCNRPaduaItaly

Personalised recommendations