Application of EPR Spectroscopy in Studies of Soils from Destroyed Forests

  • Maria JerzykiewiczEmail author
  • Gabriela Barančíková
  • Elżbieta Jamroz
  • Andrea Kałuża-Haładyn
Original Paper


The presented results show that significant changes have taken place in the structure of the humic acids in the soils affected by forest destruction. Regardless of the cause of forest removal: clear-cutting, a wildfire or a windstorm, its effect on soil humic acids was the same. The elemental analysis and the spectroscopic data (UV–Vis, EPR) indicate a higher content of aliphatic moieties and hence a lower degree of humification (higher parameter g of the radicals) of the organic matter extracted from the affected plots in comparison with the reference ones. Due to the slowing down of the humification processes, the soil organic matter extracted from the spruce forest on the disturbed plots is not as stable as the one taken from the reference plots. The results prove that semiquinone radicals present in humic acids are suitable indicators for tracking changes in the humified matter in the organic and mineral layers of forest soil under different management regimes in disturbed areas. Principally, the EPR method is an appropriate instrument which, through the detailed quantitative and qualitative determination of semiquinone radicals, makes it possible to track changes in the inner chemical structure of humic acids.



We thank dr. Erika Gömöryová and her co-workers for samplning of forest soil in Tatra mountains. This work was supported by the Wrocław Centre of Biotechnology, the Leading National Research Centre (KNOW) programme for the years 2014–2018, and National Science Centre Poland (NCN) grant NN305 155937 and the Slovak Research and Development Agency under contract APVV-14-0087.


  1. 1.
    F.J. Stevenson, Humus Chemistry. Genesis, Composition, Reactions (Willey, New York, 1982), pp. 195–220Google Scholar
  2. 2.
    N. Senesi, in Adv. Soil. Sci, vol. 14, ed. by B.A. Stewart (Springer-Verlag, Berlin, 1990), p. 77CrossRefGoogle Scholar
  3. 3.
    N. Senesi, Anal. Chim. Acta. 232, 51 (1990)CrossRefGoogle Scholar
  4. 4.
    N. Senesi, in Humus, Its Structure and Role in Agriculture and Environment, ed. by J. Kubat, (Elsevier Science B.V., Amsterdam, 1992) p. 11–26CrossRefGoogle Scholar
  5. 5.
    N. Senesi, T. M. Miano, G. Brunetti,  Humic Substances in Terrestrial Ecosystems ed. by A. Piccolo, (Elsevier Science B.V., Amsterdam, 1996) p. 531–593Google Scholar
  6. 6.
    I. Kögel-Knabner, Geoderma 80, 243–270 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    M. López-Martín, F. Javier González-Vila, H. Knicker, Sci. Total Environ. 637–638, 1187–1196 (2018)ADSCrossRefGoogle Scholar
  8. 8.
    R. Riffaldi, M. Schnitzer, Soil Sci. Soc. Am. J. 36, 301–305 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    M. Jerzykiewicz, A. Jezierski, F. Czechowski, J. Drozd, Org. Geochem. 33, 265–268 (2002)CrossRefGoogle Scholar
  10. 10.
    A. Jezierski, J. Drozd, M. Jerzykiewicz, Y. Chen, K.J. Kaye, Appl. Magn. Reson. 14, 275–282 (1998)CrossRefGoogle Scholar
  11. 11.
    A. Jezierski, F. Czechowski, M. Jerzykiewicz, J. Drozd. Appl. Magn. Reson. 18, 127–136 (2000)CrossRefGoogle Scholar
  12. 12.
    P. Fin, in Forests in Poland. ed. by W. Milewski, (The State Forests Information Centre, Warsaw, 2012), p. 5Google Scholar
  13. 13.
    E. Jamroz, A. Kocowicz, J. Bekier, J. Weber, For. Ecol. Manage. 330, 261–270 (2014)CrossRefGoogle Scholar
  14. 14.
    E. Jamroz, SYLWAN 156(11), 825–832 (2012)Google Scholar
  15. 15.
    G. Barančíková, M. Jerzykiewicz, E. Gömöryová, E. Tobiašová, T. Litavec, JSS 18, 2738–2747 (2018).Google Scholar
  16. 16.
    M. Turcani, T. Hlasny, J. For. Sci. 53, 45–52 (2007)CrossRefGoogle Scholar
  17. 17.
    J. Kukla, M. Kuklova, Beskydy 4(2), 161–172 (2011)Google Scholar
  18. 18.
    J.A. Gonzáles-Pérez, F.J. Gonzáles-Vila, G. Almendros, H. Knicker, Environ. Int. 30, 855–870 (2004). CrossRefGoogle Scholar
  19. 19.
    R. S. Swift, in Methods of Soil Analysis. Part 3. Chemical methods—SSSA book series no. 5, (Madison, 1996), p. 1011–1069Google Scholar
  20. 20.
    R. Krzyminiewski, Z. Kruczyński, B. Dobosz, A. Zając, A. Mackiewicz, E. Leporowska, S. Folwaczna, Appl. Magn. Reson. 40, 321–330 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Bartoll, A. Tani, M. Ikeya, T. Inada, Appl. Magn. Reson. 11, 577–586 (1996)CrossRefGoogle Scholar
  22. 22.
    J. R. Pilborow, Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990) pp. 499–515Google Scholar
  23. 23.
    M. Jerzykiewicz, J. Drozd, A. Jezierski, Chemosphere 39, 253–268 (1999)ADSCrossRefGoogle Scholar
  24. 24.
    A. Jezierski, F. Czechowski, M. Jerzykiewicz, I. Golonka, J. Drozd, E. Bylińska, Y. Chen, M.R.D. Seaward, Spectrochim. Acta Part A Mol Biomol. Spectrosc. 58, 1293–1300 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Chen, N. Senesi, M. Schnitzer, SSSAJ 41, 352–358 (1977)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  • Maria Jerzykiewicz
    • 1
    Email author
  • Gabriela Barančíková
    • 2
  • Elżbieta Jamroz
    • 3
  • Andrea Kałuża-Haładyn
    • 3
  1. 1.University of Wroclaw, Faculty of ChemistryWrocławPoland
  2. 2.Soil Science and Conservation Research InstitutePrešovSlovakia
  3. 3.Institute of Soil Science and Environmental ProtectionWroclaw University of Environmental and Life SciencesWrocławPoland

Personalised recommendations