Advertisement

LASIK und Femto-LASIK 2019: eine Standortbestimmung

  • Thomas KohnenEmail author
  • Gernot Steinwender
themenschwerpunkt
  • 4 Downloads

Zusammenfassung

Die Laser in situ Keratomileusis (LASIK) stellt weltweit den Goldstandard der laserchirurgischen Verfahren zur dauerhaften Korrektur von Brechkraftfehlern dar. Durch den technologischen Fortschritt und die zunehmende chirurgische Expertise konnten in der letzten Dekade die refraktive Genauigkeit dieser Methode weiter verfeinert und die Risiken gesenkt werden. Das Ziel dieses Übersichtsartikels ist eine Standortbestimmung der LASIK Ende 2019: Historie, Patientenselektion, Operationsmethode, Risiken und Erfolgsraten.

Schlüsselwörter

Laser in situ Keratomileusis Femtosekundenlaser Excimer Laser Refraktive Chirurgie Hornhaut 

LASIK and Femto-LASIK: a review of the current situation in 2019

Summary

Laser in situ keratomileusis (LASIK) is the gold standard of laser-assisted procedures for correction of refractive error. Technological advances and growing surgeon experience during the last decade further improved refractive accuracy and complication rate of the procedure. The aim of this article is to review the current situation of LASIK in late 2019: history, patient selection, surgical method, risks and refractive outcomes.

Keywords

Laser in situ keratomileusis Femtosecond laser Excimer laser Refractive surgery Cornea 

Notes

Interessenkonflikt

T. Kohnen und G. Steinwender geben an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Barraquer J. Queratoplastia refractiva. Estud E Inf Oftalmol. IEEE Trans Med Imaging. 1949;10:1:21.Google Scholar
  2. 2.
    Barraquer J. Conducta de la còrnea frente a los cambios de espesor. Arch Soc Am Oftal Optom. IEEE Trans Med Imaging. 1964;5:81:87.Google Scholar
  3. 3.
    Ruiz L, Rowsey J. In situ keratomileusis. Invest Ophthalmol Vis Sci. 1988;29(Suppl):392.Google Scholar
  4. 4.
    Ruiz L, Rowsey J. In-situ keratomileusis with a hinged flap. European Congress of Ophthalmic Surgery Dulaney Winter Meeting: American; 1989.Google Scholar
  5. 5.
    Pallikaris IG, Papatzanaki ME, Stathi EZ, Frenschock O, Georgiadis A. Laser in situ keratomileusis. Lasers Surg Med. 1990;10(5):463–8.CrossRefGoogle Scholar
  6. 6.
    Pizzarello LD. Refractive changes in pregnancy. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2003;241(6):484–488.  https://doi.org/10.1007/s00417-003-0674-0
  7. 7.
    Kohnen T. Excimer laser refractive surgery in autoimmune diseases. J Cataract Refract Surg. 2006;32(8):1241.  https://doi.org/10.1016/j.jcrs.2006.06.001.CrossRefGoogle Scholar
  8. 8.
    Smith RJ, Maloney RK. Laser in situ keratomileusis in patients with autoimmune diseases. J Cataract Refract Surg. 2006;32(8):1292–5.  https://doi.org/10.1016/j.jcrs.2006.02.059.CrossRefGoogle Scholar
  9. 9.
    Bower KS, Woreta F. Update on contraindications for laser-assisted in situ keratomileusis and photorefractive keratectomy. Curr Opin Ophthalmol. 2014;25(4):251–7.  https://doi.org/10.1097/ICU.0000000000000055.CrossRefGoogle Scholar
  10. 10.
    Morse JS, Schallhorn SC, Hettinger K, Tanzer D. Role of depressive symptoms in patient satisfaction with visual quality after laser in situ keratomileusis. J Cataract Refract Surg. 2009;35(2):341–6.  https://doi.org/10.1016/j.jcrs.2008.10.046.CrossRefGoogle Scholar
  11. 11.
    Gomes JAP, Azar DT, Baudouin C, et al. TFOS DEWS II iatrogenic report. Ocul Surf. 2017;15(3):511–38.  https://doi.org/10.1016/j.jtos.2017.05.004.CrossRefGoogle Scholar
  12. 12.
    Moshirfar M, Welling JD, Feiz V, Holz H, Clinch TE. Infectious and noninfectious keratitis after laser in situ keratomileusis Occurrence, management, and visual outcomes. J Cataract Refract Surg. 2007;33(3):474–483.  https://doi.org/10.1016/j.jcrs.2006.11.005
  13. 13.
    Shajari M, Jaffary I, Herrmann K, et al. Early Tomographic Changes in the Eyes of Patients With Keratoconus. J Refract Surg Thorofare NJ 1995. 2018;34(4):254–259.  https://doi.org/10.3928/1081597X-20180124-01
  14. 14.
    Pop M, Payette Y. Risk factors for night vision complaints after LASIK for myopia. Ophthalmology. 2004;111(1):3–10.  https://doi.org/10.1016/j.ophtha.2003.09.022.CrossRefGoogle Scholar
  15. 15.
    Kohnen T, Neuhann T, Knorz M, Kommission Refraktive Chirurgie Kommission Refraktive Chirurgie. Kommission Refraktive Chirurgie. [Evaluation and quality assurance of refractive surgery procedures by the German Ophthalmological Society and the Professional Association of German Ophthalmologists. Status: May 2011]. Ophthalmol Z Dtsch Ophthalmol. Ges. 2011;108(9):869–82.  https://doi.org/10.1007/s00347-011-2415-9.Google Scholar
  16. 16.
    Kohnen T, Neuhann T, Knorz MC. [Assessment and quality assurance of refractive surgical interventions by the DOG (German Society of Ophthalmology) and the BVA (Professional Association of German Ophthalmologists): Update January 2014]. Ophthalmol Z Dtsch Ophthalmol Ges. 2014;111(4):320–329.  https://doi.org/10.1007/s00347-014-3057-5
  17. 17.
    Kohnen T, Fabian E, Knorz M, Auffarth GU. Bewertung und Qualitätssicherung refraktiv-chirurgischer Eingriffe durch die DOG und den BVA – KRC-Empfehlungen Stand. 2019. http://www.aad.to/krc/qualit.pdf (Erstellt: 02.2019).Google Scholar
  18. 18.
    von Jagow B, Kohnen T. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. J Cataract Refract Surg. 2009;35(1):35–41.  https://doi.org/10.1016/j.jcrs.2008.09.013.CrossRefGoogle Scholar
  19. 19.
    Chen S, Feng Y, Stojanovic A, Jankov MR, Wang Q. IntraLase femtosecond laser vs mechanical microkeratomes in LASIK for myopia: a systematic review and meta-analysis. J Refract Surg Thorofare NJ 1995. 2012;28(1):15–24.  https://doi.org/10.3928/1081597X-20111228-02
  20. 20.
    Knorz MC, Vossmerbaeumer U. Comparison of flap adhesion strength using the Amadeus microkeratome and the IntraLase iFS femtosecond laser in rabbits. J Refract Surg Thorofare NJ 1995. 2008;24(9):875–878.Google Scholar
  21. 21.
    Kim JY, Kim MJ, Kim T, Choi H, Pak JH, Tchah H. A femtosecond laser creates a stronger flap than a mechanical microkeratome. Invest Ophthalmol Vis Sci. 2006;47(2):599–604.  https://doi.org/10.1167/iovs.05-0458.CrossRefGoogle Scholar
  22. 22.
    Zhang Z‑H, Jin H‑Y, Suo Y, et al. Femtosecond laser versus mechanical microkeratome laser in situ keratomileusis for myopia: Metaanalysis of randomized controlled trials. J Cataract Refract Surg. 2011;37(12):2151–9.  https://doi.org/10.1016/j.jcrs.2011.05.043.CrossRefGoogle Scholar
  23. 23.
    Salomão MQ, Ambrósio R, Wilson SE. Dry eye associated with laser in situ keratomileusis: Mechanical microkeratome versus femtosecond laser. J Cataract Refract Surg. 2009;35(10):1756–60.  https://doi.org/10.1016/j.jcrs.2009.05.032.CrossRefGoogle Scholar
  24. 24.
    Moshirfar M, Gardiner JP, Schliesser JA, et al. Laser in situ keratomileusis flap complications using mechanical microkeratome versus femtosecond laser: retrospective comparison. J Cataract Refract Surg. 2010;36(11):1925–33.  https://doi.org/10.1016/j.jcrs.2010.05.027.CrossRefGoogle Scholar
  25. 25.
    Santhiago MR, Kara-Junior N, Waring GO. Microkeratome versus femtosecond flaps: accuracy and complications. Curr Opin Ophthalmol. 2014;25(4):270–274.  https://doi.org/10.1097/ICU.0000000000000070
  26. 26.
    Kohnen T, Steinwender G. Laser in situ keratomileusis with microkeratome or femtosecond laser]. Ophthalmol Z Dtsch Ophthalmol. Ges. 2017;114(7):661–5.  https://doi.org/10.1007/s00347-017-0517-8.Google Scholar
  27. 27.
    Knorz MC. Flap and interface complications in LASIK. Curr Opin Ophthalmol. 2002;13(4):242–5.CrossRefGoogle Scholar
  28. 28.
    Jacobs JM, Taravella MJ. Incidence of intraoperative flap complications in laser in situ keratomileusis. J Cataract Refract Surg. 2002;28(1):23–8.CrossRefGoogle Scholar
  29. 29.
    Haft P, Yoo SH, Kymionis GD, Ide T, O’Brien TP, Culbertson WW. Complications of LASIK flaps made by the IntraLase 15- and 30-kHz femtosecond lasers. J Refract Surg Thorofare NJ 1995. 2009;25(11):979–984.  https://doi.org/10.3928/1081597X-20091016-02
  30. 30.
    Carrillo C, Chayet AS, Dougherty PJ, et al. Incidence of complications during flap creation in LASIK using the NIDEK MK-2000 microkeratome in 26,600 cases. J Refract Surg Thorofare NJ 1995. 2005;21(5 Suppl):S655–657.Google Scholar
  31. 31.
    Kohnen T, Schwarz L, Remy M, Shajari M. Short-term complications of femtosecond laser-assisted laser in situ keratomileusis cuts: Review of 1210 consecutive cases. J Cataract Refract Surg. 2016;42(12):1797–803.  https://doi.org/10.1016/j.jcrs.2016.11.029.CrossRefGoogle Scholar
  32. 32.
    Ambrósio R Jr, Tervo T, Wilson SE. LASIK-associated Dry Eye and Neurotrophic Epitheliopathy: Pathophysiology and Strategies for Prevention and Treatment. J Refract Surg. 2008;24(4):396–407.  https://doi.org/10.3928/1081597X-20080401-14.CrossRefGoogle Scholar
  33. 33.
    Kohnen T, Remy M. Complications of corneal lamellar refractive surgery]. Ophthalmol Z Dtsch Ophthalmol. Ges. 2015;112(12):982–9.  https://doi.org/10.1007/s00347-015-0172-x.Google Scholar
  34. 34.
    Tehrani M, Dick HB. Striae in the flap after laser in situ keratomileusis. Etiology, diagnosis and treatment]. Ophthalmol Z Dtsch Ophthalmol. Ges. 2002;99(8):645–50.Google Scholar
  35. 35.
    Kaufman SC, Maitchouk DY, Chiou AG, Beuerman RW. Interface inflammation after laser in situ keratomileusis. Sands of the Sahara syndrome. J Cataract Refract Surg. 1998;24(12):1589–1593.Google Scholar
  36. 36.
    Llovet F, de Rojas V, Interlandi E, et al. Infectious keratitis in 204 586 LASIK procedures. Ophthalmology. 2010;117(2):232–238.e1–4.  https://doi.org/10.1016/j.ophtha.2009.07.011
  37. 37.
    Bohac M, Koncarevic M, Pasalic A, et al. Incidence and Clinical Characteristics of Post LASIK Ectasia: A Review of over 30,000 LASIK Cases. Semin Ophthalmol. 2018;33(7–8):869–877.  https://doi.org/10.1080/08820538.2018.1539183
  38. 38.
    Randleman JB, Woodward M, Lynn MJ, Stulting RD. Risk assessment for ectasia after corneal refractive surgery. Ophthalmology. 2008;115(1):37–50.  https://doi.org/10.1016/j.ophtha.2007.03.073.CrossRefGoogle Scholar
  39. 39.
    Randleman JB, Russell B, Ward MA, Thompson KP, Stulting RD. Risk factors and prognosis for corneal ectasia after LASIK. Ophthalmology. 2003;110(2):267–275.  https://doi.org/10.1016/S0161-6420(02)01727-X
  40. 40.
    Randleman JB, Trattler WB, Stulting RD. Validation of the Ectasia Risk Score System for preoperative laser in situ keratomileusis screening. Am J Ophthalmol. 2008;145(5):813–8.  https://doi.org/10.1016/j.ajo.2007.12.033.CrossRefGoogle Scholar
  41. 41.
    Solomon KD, Fernández de Castro LE, Sandoval HP, et al. LASIK world literature review: quality of life and patient satisfaction. Ophthalmology. 2009;116(4):691–701.  https://doi.org/10.1016/j.ophtha.2008.12.037
  42. 42.
    Sandoval HP, Donnenfeld ED, Kohnen T, et al. Modern laser in situ keratomileusis outcomes. J Cataract Refract Surg. 2016;42(8):1224–34.  https://doi.org/10.1016/j.jcrs.2016.07.012.CrossRefGoogle Scholar
  43. 43.
    Price MO, Price DA, Bucci FA, Durrie DS, Bond WI, Price FW. Three-Year Longitudinal Survey Comparing Visual Satisfaction with LASIK and Contact Lenses. Ophthalmology. 2016;123(8):1659–66.  https://doi.org/10.1016/j.ophtha.2016.04.003.CrossRefGoogle Scholar
  44. 44.
    Market scope forecasts. Market Scope. 2014.Google Scholar
  45. 45.
    Kohnen T. Refraktive Chirurgie. Dordrecht: Springer. 2011. http://public.eblib.com/choice/publicfullrecord.aspx?p=770138. Zugegriffen: 20. Juli 2018.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für AugenheilkundeGoethe-Universität Frankfurt am MainFrankfurt am MainDeutschland
  2. 2.Universitäts-AugenklinikMedizinische Universität GrazGrazÖsterreich

Personalised recommendations