Advertisement

Mineralogy and Petrology

, Volume 113, Issue 5, pp 593–612 | Cite as

Origin of V. Grib pipe eclogites (Arkhangelsk region, NW Russia): geochemistry, Sm-Nd and Rb-Sr isotopes and relation to regional Precambrian tectonics

  • Elena V. ShchukinaEmail author
  • Aleksey M. Agashev
  • Natalia G. Soloshenko
  • Mariya V. Streletskaya
  • Dmitry A. Zedgenizov
Original Paper
  • 94 Downloads

Abstract

In this paper, new main and trace elements and isotopic data are presented for 14 coarse-grained eclogite xenoliths from the V. Grib kimberlite pipe in the central part of the Arkhangelsk Diamondiferous Province. Based on reconstructed whole rock MgO content, this suite is divided into high-MgO and low-MgO varieties. Eclogitic groups have a similar range of variations in the trace element compositions of garnet, clinopyroxene and reconstructed whole rock. All eclogites show positive Eu anomalies in garnet and Sr anomalies in the whole rock. The negative correlation between the Mg#, Sr/Lu ratio and HREE in a whole rock points to upper and lower oceanic crustal rocks as a protolith for eclogites with high and low whole rock HREEs, respectively. Low-MgO eclogites with higher whole rock HREEs have the basaltic upper oceanic crustal protolith, whereas the protoliths of eclogites with lower whole rock HREEs could be of gabbroic composition from the lower oceanic crust. High-MgO eclogites could represent MgO-rich portions of oceanic crustal rocks: picritic/MgO basalt portions in the upper oceanic crust and troctolite portions in the lower oceanic crust. The Sr and Nd isotope compositions suggest a complex history of eclogites during their residence in the lithospheric mantle. Similarities in the Nd isotope compositions and two-point Sm-Nd isochron ages are evidence for re-equilibration of the Sm-Nd isotope system between the eclogite garnet and clinopyroxene via a pre-kimberlite thermal event at 396 ± 24 Ma. The subset of clinopyroxenes from four eclogites has a Sr isotope composition that plots on the isochron at an age of 2.84 Ga, which reflects the time of the subduction event and emplacement into the lithosphere and corresponds to the time of the Belomorian Eclogite Province of Baltic Shield formation.

Keywords

Eclogite Subduction Sm-Nd and Rb-Sr isotopes Arkhangelsk Diamondiferous Province Kimberlite 

Notes

Acknowledgments

This manuscript has benefited greatly from the detailed and insightful comments of Alexei Perchuk and an anonymous reviewer, and Editors Maarten A.T.M. Broekmans and Shah Wali Faryad. We would like to thank Nikolai V. Sobolev and Katie Smart for constructive reviews of an earlier version of this manuscript. This work was supported by the Russian Science Foundation under grant no. 16-17-10067 to DAZ and EVS. The fieldwork and sampling were done on state assignment of IGM SB RAS.

Supplementary material

710_2019_679_MOESM1_ESM.xlsx (38 kb)
ESM 1 (XLSX 38 kb)
710_2019_679_MOESM2_ESM.xlsx (98 kb)
ESM 2 (XLSX 98 kb)

References

  1. Achterbergh EV, Griffin W, Stiefenhofer J (2001) Metasomatism in mantle xenoliths from the Letlhakane kimberlites: estimation of element fluxes. Contrib Mineral Petrol 141:397–414CrossRefGoogle Scholar
  2. Agashev AM, Pokhilenko LN, Pokhilenko NP, Shchukina EV (2018) Geochemistry of eclogite xenoliths from the Udachnaya kimberlite pipe: section of ancient oceanic crust sampled. Lithos 314-315:187–200CrossRefGoogle Scholar
  3. Aoki A (1974) Phlogopite and potassic richterite from mica nodules in south African kimberlites. Contrib Mineral Petrol 115:467–473Google Scholar
  4. Aoki KI, Shiba I (1973) Pyroxenes from lherzolite inclusions of Itiome-Gata, Japan. Lithos 6:41–51CrossRefGoogle Scholar
  5. Arevalo R, McDonough WF (2010) Chemical variations and regional diversity observed in MORB. Chem Geol 271:70–85CrossRefGoogle Scholar
  6. Aulbach S, Jacob DE (2016) Major- and trace-elements in cratonic mantle eclogites and pyroxenites reveal heterogeneous sources and metamorphic processing of low-pressure protoliths. Lithos 262:586–605CrossRefGoogle Scholar
  7. Aulbach S, Viljoen KS (2015) Eclogite xenoliths from the lace kimberlite, Kaapvaal craton: from convecting mantle source to palaeo-ocean floor and back. Earth Planet Sci Lett 431:274–286CrossRefGoogle Scholar
  8. Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link? Contrib Mineral Petrol 143:56–70CrossRefGoogle Scholar
  9. Aulbach S, Gerdes A, Viljoen KS (2016) Formation of diamondiferous kyanite–eclogite in a subduction melange. Geochim Cosmochim Acta 179:156–176CrossRefGoogle Scholar
  10. Bach W, Alt JC, Niu Y, Humphris SE, Erzinger J, Dick HJB (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian ridge: results from ODP hole 735B (leg 176). Geochim Cosmochim Acta 65:3267–3287CrossRefGoogle Scholar
  11. Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley JW, Haggerty SE (2001) Geochemistry of xenolithic eclogites from West Africa, part I: a link between low MgO eclogites and Archean crust formation. Geochim Cosmochim Acta 65(9):1499–1527CrossRefGoogle Scholar
  12. Barth MG, Rudnick RL, Horn I, McDonough WF, Spicuzza MJ, Valley JW, Haggerty SE (2002) Geochemistry of xenolithic eclogites from West Africa, part 2: origins of the high MgO eclogites. Geochim Cosmochim Acta 66:4325–4345CrossRefGoogle Scholar
  13. Beard AD, Downes H, Hegner E, Sablukov SM (2000) Geochemistry and mineralogy of kimberlites from the Arkhangelsk region, NW Russia: evidence for transitional kimberlite magma types. Lithos 51:47–73CrossRefGoogle Scholar
  14. Bibikova EV, Bogdanova SV, Glebovitsky VA, Claesson S, Skiold T (2004) Evolution of the Belomorian belt: NORDSIM UPb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages. Petrology 12:195–210Google Scholar
  15. Bobrov AV, Verichev EM, Garanin VK, Kudryavtseva GP (2005) The first find of kyanite eclogite in the V. Grib kimberlite pipe (Arkhangelsk province). Dokl Earth Sci 402(4):628–631Google Scholar
  16. Bogatikov OA, Garanin VK, Kononova VA, Kudryavceva GP, Vasil’eva ER, Verzhak VV, Verichev EM, Parsadanyan KS, Posuhova TV (1999) Arkhangelsk diamondiferous province. Moscow State University Press, Moscow (in Russian)Google Scholar
  17. Carswell DA (1973) Primary and secondary phlogopites and clinopyroxenes in garnet lherzolite xenoliths. In: Ahrean, LH, Duncan, AR, Erlank, AJ (eds.), International Conference on Kimberlites (Extended Abstracts), Cape Town, South Africa. Pergamon Press, Oxford, pp 417–429Google Scholar
  18. Chepurov AA, Faryad SW, Agashev AM, Strnad L, Jedlicka R, Turkin AI, Mihaljevic M, Lin VV (2019) Experimental crystallization of a subcalcic Cr-rich pyrope in the presence of REE-bearing carbonatite. Chem Geol 509:103–114CrossRefGoogle Scholar
  19. Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites; their differences and similarities. Geol Soc Am Bull 76(5):483–508CrossRefGoogle Scholar
  20. Dawson JB (1984) Contrasting type of upper-mantle metasomatism. In: Kornprobst J (ed) Kimberlites II: the mantle and crust-mantle relationships. Elsevier, Amsterdam, pp 289–294CrossRefGoogle Scholar
  21. De Stefano A, Kopylova MG, Cartigny P, Afanasiev VP (2009) Diamonds and eclogites of the Jericho kimberlite (northern Canada). Contrib Mineral Petrol 158:295–315CrossRefGoogle Scholar
  22. Dokukina K, Mints M (2019) Subduction of the Mesoarchaean spreading ridge and related metamorphism, magmatism and deformation by the example of the Gridino eclogitized mafic dyke swarm, the Belomorian Eclogite Province, eastern Fennoscandian shield. J Geodyn 123:1–37CrossRefGoogle Scholar
  23. Elliott TR, Hawkesworth CJ, Gronvold K (1991) Dynamic melting of the Iceland plume. Nature 351:201–206CrossRefGoogle Scholar
  24. Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Mineral Petrol 71:13–22CrossRefGoogle Scholar
  25. Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies MA (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: Menzies MA, Hawkesworth CJ (eds) Mantle Metasomatism. Academic, London, pp 221–311Google Scholar
  26. Gillis KM, Snow JE, Klaus A, Abe N et al (2013) Primitive layered gabbros from fast-spreading lower oceanic crust. Nature 505:204–207CrossRefGoogle Scholar
  27. Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243:189–201CrossRefGoogle Scholar
  28. Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D, Kato Y, Mariet C, Rosner M (2009) Geochemistry of a long in-situ section of intrusive slow-spread oceanic lithosphere: results from IODP site U1309 (Atlantis massif, 30°N mid-Atlantic-ridge). Earth Planet Sci Lett 279:110–122CrossRefGoogle Scholar
  29. Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Halenius U (2013) Nomenclature of the garnet supergroup. Am Mineral 98:785–811CrossRefGoogle Scholar
  30. Harte B (1987) Metasomatic events recorded in mantle xenoliths: an overview. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 625–640Google Scholar
  31. Hasterok D, Chapman DS (2011) Heat production and geotherms for the continental lithosphere. Earth Planet Sci Lett 307:59–70CrossRefGoogle Scholar
  32. Helmstaedt (2013) Tectonic relationships between E-type cratonic and ultra-high-pressure (UHP) diamond: implications for craton formation and stabilization. In: Pearson DG et al (eds) Proceedings of 10th international kimberlite conference, volume 1, special issue of the journal of the geological Society of India, pp 45–58Google Scholar
  33. Herzberg C, Zhang J (1997) Melting experiments on komatiite analog composition at 5 GPa. Am Mineral 82:354–367CrossRefGoogle Scholar
  34. Hills DV, Haggerty SE (1989) Petrochemistry of eclogites from the Koidu kimberlite complex, Sierra Leone. Contrib Mineral Petrol 103:397–422CrossRefGoogle Scholar
  35. Hoffman AW (1988) Chemical differentiation of the earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  36. Horn L, Hinton RW, Jackson SE, Longerich HP (1997) Ultra-trace element analysis of NIST SRM 616 and 614 using laser ablation microprobe-inductively coupled plasmamass spectrometry (LAM-ICP-MS): a comparisonwith secondary ion mass spectrometry (SIMS). Geostand Newslett 21:191–203CrossRefGoogle Scholar
  37. Ireland TA, Rudnick RL, Spetsius Z (1994) Trace elements in diamond inclusions from eclogites reveal link to Archean granites. Earth Planet Sci Lett 128:199–213CrossRefGoogle Scholar
  38. Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77(1–4):295–316CrossRefGoogle Scholar
  39. Jacob DE, Folley SF (1999) Evidence for Archean Ocean crust with low high field strength element signature from diamondiferous eclogite xenoliths. Lithos 48:317–336CrossRefGoogle Scholar
  40. Jacob D, Jagoutz E, Lowry D, Mattey D, Kudrjavtseva G (1994) Diamondiferous eclogites from Siberia: remnants of Archean oceanic crust. Geochim Cosmochim Acta 58(23):5191–5207CrossRefGoogle Scholar
  41. Jacob DE, Schmickler B, Schulze DJ (2003) Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos 71:337–351CrossRefGoogle Scholar
  42. Jagoutz E, Dawson JB, Hoernes S, Spettel B, Wanke H (1984) Anorthositicoceanic crust in the Archean Earth. 15th Lunar Planet Sci Conf, pp 395–396Google Scholar
  43. Kargin AV, Sazonova LV, Nosova AA, Tretyachenko VV (2016) Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts. Lithos 262:442–455CrossRefGoogle Scholar
  44. Kargin AV, Sazonova LV, Nosova AA, Pervov VA, Minevrina EV, Khvostikov VA, Burmii ZP (2017) Sheared peridotite xenolith from the V. Grib kimberlite pipe, Arkhangelsk Diamond Province, Russia: texture, composition, and origin. Geosci Front 8:653–669CrossRefGoogle Scholar
  45. Kononova VA, Golubeva YY, Bogatikov OA, Kargin AV (2007) Diamond resource potential of kimberlites from the Zimny Bereg field, Arkhangel'sk oblast. Geol Ore Deposit 49:421–441CrossRefGoogle Scholar
  46. Koreshkova MY, Downes H, Glebovitsky VA, Rodionov NV, Antonov AV, Sergeev SA (2014) Zircon trace element characteristics and ages in granulite xenoliths; a key to understanding the age and origin of the lower crust, Arkhangelsk kimberlite province, Russia. Contrib Mineral Petrol 167:973CrossRefGoogle Scholar
  47. Korolyuk VN, Lavrent’ev YG, Usova LV, Nigmatulina EN (2008) JXA-8100 microanalyzer: accuracy of analysis of rock-forming minerals. Russ Geol Geophys (Geologiya i Geofizika) 49(3):165–168 (221-225)CrossRefGoogle Scholar
  48. Korolyuk VN, Usova LV, Nigmatulina EN (2009) Accuracy in the determination of the compositions of main rockforming silicates and oxides on a JXA-8100 microanalyzer. J Anal Chem 64(10):1042–1046CrossRefGoogle Scholar
  49. Kostrovitsky SI, Malkovets VG, Verichev EM, Garanin VK, Suvorova LV (2004) Megacrysts from the Grib kimberlite pipe (Arkhangelsk Province, Russia). Lithos 77:511–523CrossRefGoogle Scholar
  50. Lavrent’ev YG, Korolyuk VN, Usova LV, Nigmatulina EN (2015) Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russ Geol Geophys 56:1428–1436CrossRefGoogle Scholar
  51. Le Roux PS, le Roux AP, Schilling JG (2002) Crystallization processes beneath the southern mid-Atlantic ridge (40 – 55 ° S), evidence for high-pressure initiation of crystallization. Contrib Mineral Petrol 142:582–602CrossRefGoogle Scholar
  52. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution of lunar crust and mantle. Earth Planet Sci Lett 39:349–357CrossRefGoogle Scholar
  53. MacGregor ID, Manton WI (1986) Roberts victor eclogites: ancient oceanic crust. J Geophys Res 91(B14):14063–14079CrossRefGoogle Scholar
  54. Mahotkin IL, Gibson SA, Thompson RN, Zhuravlev DZ, Zherdev PU (2000) Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Arkhangelsk region, Russia. J Petrol 41(2):201–227CrossRefGoogle Scholar
  55. McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  56. Mints MV, Dokukina KA, Konilov AN (2014) The Meso-Neoarchaean Belomorian eclogite province: tectonic position and geodynamic evolution. Gondwana Res 25:561–584CrossRefGoogle Scholar
  57. Misra KC, Anand M, Taylor LA, Sobolev NV (2004) Multi-stage metasomatism of diamondiferous eclogite xenoliths from the Udachnaya kimberlite pipe, Yakutia, Siberia. Contrib Mineral Petrol 146(6):696–714CrossRefGoogle Scholar
  58. Morimoto N (1988) Pyroxene nomenclature. Mineral Petrol 39:55–76CrossRefGoogle Scholar
  59. O'Hara MJ, Yoder HS (1967) Formation and fractionation of basic magmas at high pressures. Scott J Geol 3:67–117CrossRefGoogle Scholar
  60. Pearson DG (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry V.2., the mantle and core. Elsevier, Amsterdam, pp 171–276CrossRefGoogle Scholar
  61. Pearson DG, Snyder GA, Shirey SB, Taylor LA, Carlson RW, Sobolev NV (1995) Archean Re-Os age for Siberian eclogites and constraints on Archean tectonics. Nature 374:711–713CrossRefGoogle Scholar
  62. Perchuk AL, Morgunova AA (2014) Variable P–T paths and HP-UHP metamorphism in a Precambrian terrane, Gridino, Russia: petrological evidence and geodynamic implications. Gondwana Res 25(2):614–629CrossRefGoogle Scholar
  63. Perfit MR, Fornari DJ, Ridley WI, Kirk PD, Kastens KA, Reynolds JR, Edwards M, Desonie D, Shuster R, Paradis S (1996) Recent volcanism in the Siqueiro transform fault: picritic basalts and implications for MORB magma genesis. Earth Planet Sci Lett 141:91–108CrossRefGoogle Scholar
  64. Pernet-Fisher JF, Howarth GH, Liu Y, Barry PH, Carmody L, Valley JW, Bodnar RJ, Spetsius ZV, Taylor LA (2014) Komsomolskaya diamondiferous eclogites: evidence for oceanic crustal protoliths. Contrib Mineral Petrol 167:981CrossRefGoogle Scholar
  65. Pin C, Joannon S, Bosq C, Le Fèvre B, Gauthier PJ (2003) Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following separation of the analytes. J Anal Atom Spectrom 18:135–141CrossRefGoogle Scholar
  66. Promprated P, Taylor LA, Ananda M, Floss C, Sobolev NV, Pokhilenko NP (2004) Multiple-mineral inclusions in diamonds from the snap Lake/king Lake kimberlite dike, slave craton, Canada: a trace-element perspective. Lithos 77:69–81CrossRefGoogle Scholar
  67. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36(4):891–931CrossRefGoogle Scholar
  68. Rudnick RL (1995) Making continental crust. Nature 378:571–578CrossRefGoogle Scholar
  69. Samsonov AV, Nosova AA, Tretyachenko VV, Larchenko VA, Larionova YO (2009) Collisional sutures in the early Precambrian crust as a factor responsible for localization of diamondiferous kimberlites in the northern east European platform. Dokl Earth Sci 425(2):226–230CrossRefGoogle Scholar
  70. Schmickler B, Jacob DE, Foley SF (2004) Eclogite xenoliths from the Kuruman kimberlites, South Africa: geochemical fingerprinting of deep subduction and cumulate processes. Lithos 75:173–207CrossRefGoogle Scholar
  71. Schmidberger SS, Simonetti A, Heaman LM, Creaser RA, Whiteford S (2007) Lu-Hf, in-situ Sr and Pb isotope and trace element systematics for mantle eclogites from the Diavik diamond mine: evidence for Paleoproterozoic subduction beneath the slave craton, Canada. Earth Planet Sci Lett 254:55–68CrossRefGoogle Scholar
  72. Shchukina EV, Shchukin VS (2018) Diamond exploration potential of the northern east European platform. Minerals 8(5):189CrossRefGoogle Scholar
  73. Shchukina EV, Golovin NN, Malkovets VG, Pokhilenko NP (2012) Mineralogy and equilibrium P-T estimates for peridotite assemblages from the V. Grib kimberlite pipe (Arkhangelsk Kimberlite Province). Dokl Earth Sci 444(2):776–781CrossRefGoogle Scholar
  74. Shchukina EV, Agashev AM, Golovin NN, Pokhilenko NP (2015a) Equigranular Eclogites from the V. Grib kimberlite pipe: evidence for Paleoproterozoic subduction on the territory of the Arkhangelsk Diamondiferous Province. Dokl Earth Sci 462(1):497–501CrossRefGoogle Scholar
  75. Shchukina EV, Agashev AM, Kostrovitsky SI, Pokhilenko NP (2015b) Metasomatic processes in the lithospheric mantle beneath the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province). Russ Geol Geophys 56(12):1701–1716CrossRefGoogle Scholar
  76. Shchukina EV, Agashev AM, Pokhilenko NP (2017) Metasomatic origin of garnet xenocrysts from the V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. Geosci Front 8:641–651CrossRefGoogle Scholar
  77. Shchukina EV, Agashev AM, Zedgenizov DA (2018) Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): evidence from mineral geochemistry and the U-Pb and Lu-Hf isotope compositions of zircon. Mineral Petrol 112(1):85–100CrossRefGoogle Scholar
  78. Shevchenko SS, Lokhov KI, Sergeev SA (2004) Isotope studies in VSEGEI. Prospects of application of results for predicting and search of diamond deposits. In: Proceedings of scientific practical conference on efficiency of prediction and search for diamond deposits: past, present, and future, St. Petersburg, pp 383–387Google Scholar
  79. Shur MY, Perchuk AL (2015) Omphacite paradox in mantle peridotites. Russ Geol Geophys 56(11):1568–1577CrossRefGoogle Scholar
  80. Shvetsov MS (1954) Concerning some additional aids in studying sedimentary formations. Bulletin of the Moscow Society of Naturalists. Byulleten Moskovskogo Obshchestva Ispytateley Prirody 29/1:61–66 Moscow University, Geology Section. (in Russian)Google Scholar
  81. Smart KA, Heaman LM, Chacko T, Simonetti A, Kopylova M, Mah D, Daniels D (2009) The origin of high-MgO diamond eclogites from the Jericho kimberlite, Canada. Earth Planet Sci Lett 284:527–537CrossRefGoogle Scholar
  82. Smart KA, Chacko T, Stachel T, Tappe S, Stern RA, Ickert RB, EIMF (2012) Eclogite formation beneath the northern slave craton constrained by diamond inclusions: oceanic lithosphere origin without a crustal signature. Earth Planet Sci Lett 319-320:165–177CrossRefGoogle Scholar
  83. Smart KA, Chacko T, Simonetti A, Sharp ZD, Heaman LM (2014) Record of Paleoproterozoic subduction preserved in the northern slave Cratonic mantle: Sr–Pb–O isotope and trace-element investigations of Eclogite xenoliths from the Jericho and muskox kimberlites. J Petrol 55(3):549–583CrossRefGoogle Scholar
  84. Smit KV, Stachel T, Creaser RA, Ickert RB, DuFrane SA, Stern SA, Seller M (2014) Origin of eclogite and pyroxenite xenoliths from the victor kimberlite, Canada, and implications for superior craton formation. Geochim Cosmochim Acta 125:308–337CrossRefGoogle Scholar
  85. Smyth JR, Caporuscio FA, McCormick T (1989) Mantle eclogites: evidence of igneous fractionation in the mantle. Earth Planet Sci Lett 93:133–141CrossRefGoogle Scholar
  86. Snyder GA, Taylor LA, Crozaz G, Halliday AN, Beard BL, Sobolev VN, Sobolev NV (1997) The origins of Yakutian eclogite xenoliths. J Petrol 38:85–113CrossRefGoogle Scholar
  87. Sobolev NV (2006) Coesite as an indicator of ultrahigh pressures in continental lithosphere. Russ Geol Geophys 47(1):94–101Google Scholar
  88. Sobolev NV, Lavrent’ev YG (1971) Isomorphic sodium admixture in garnets formed at high pressure. Contrib Mineral Petrol 31:1–12CrossRefGoogle Scholar
  89. Sobolev NV, Bakumenko IT, Yefimova ES, Pokhilenko NP (1991) Morphological features of microdiamonds, sodium in garnet, and potassium in clinopyroxenes, contents of two eclogite xenoliths from the Udachnaya kimberlite pipe (Yakutia). Dokl Akad Nauk SSSR 321:585–591 (in Russian)Google Scholar
  90. Sobolev NV, Yefimova ES, Reimers LF, Zakharchenko OD, Makhin AI, Usova LV (1997) Mineral inclusions in diamonds of the Arkhangelsk kimberlite province. Russ Geol (Geologiya) Geophys (Geofizika) 38(2):379–393Google Scholar
  91. Sobolev NV, Snyder GA, Taylor LA, Keller RA, Yefimova ES, Sobolev VN, Shimizu N (1998) Extreme chemical diversity in the mantle during eclogite diamond formation: evidence from 35 garnet and 5 pyroxene inclusions in a single diamond. Int Geol Rev 40:567–578CrossRefGoogle Scholar
  92. Sobolev NV, Logvinova AM, Efimova ES (2009) Syngenetic phlogopite inclusions in kimberlite hosted diamonds: implications for role of volatiles in diamond formation. Russ Geol Geophys 50(12):1234–1248CrossRefGoogle Scholar
  93. Stachel T, Harris JW (2008) The origin of cratonic diamonds — constraints from mineral inclusions. Ore Geol Rev 34:5–32CrossRefGoogle Scholar
  94. Tappe S, Smart KA, Pearson DG, Steenfelt A, Simonetti A (2011) Craton formation in late Archean subduction zones revealed byfirst Greenland eclogites. Geology 39:1103–1106CrossRefGoogle Scholar
  95. Taylor LA, Anand M (2004) Diamonds: time capsules from the Siberian mantle. Chem Erde 64:1–74CrossRefGoogle Scholar
  96. Taylor LA, Neal CR (1989) Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part I: mineralogy, petrography, and whole rock chemistry. J Geol 97:551–567CrossRefGoogle Scholar
  97. Taylor LA, Snyder GA, Keller R, Remley DA, Anand M, Wiesli R, Valley J, Sobolev NV (2003) Petrogenesis of group a eclogites and websterites; evidence from the Obnazhennaya kimberlite, Yakutia. Contrib Mineral Petrol 145(4):424–443CrossRefGoogle Scholar
  98. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Pet 39:29–60CrossRefGoogle Scholar
  99. White AJR (1964) Clinopyroxenes from eclogites and basic granulites. Am Mineral 49:883–888Google Scholar
  100. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  101. Zedgenizov D, Rubatto D, Shatsky V, Ragozin A, Kalinina V (2006) Eclogitic diamonds from variable crustal protoliths in the northeastern Siberian craton: trace elements and coupled δ13C–δ18O signatures in diamonds and garnet inclusions. Chem Geol 422:46–59CrossRefGoogle Scholar
  102. Zedgenizov DA, Malkovets VG, Griffin WL (2017) Composition of diamond-forming media in cuboid diamonds from the V. Grib kimberlite pipe (Arkhangelsk province, Russia). Geochem J 51(3):205–213CrossRefGoogle Scholar
  103. Zhao G, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1 – 1.8 Ga orogens: implications for a pre – Rodinia supercontinent. Earth-Sci Rev 59(1–4):125–162CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Elena V. Shchukina
    • 1
    • 2
    Email author
  • Aleksey M. Agashev
    • 1
  • Natalia G. Soloshenko
    • 3
  • Mariya V. Streletskaya
    • 3
  • Dmitry A. Zedgenizov
    • 1
    • 2
    • 4
  1. 1.Sobolev Institute of Geology and MineralogySiberian Branch Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Zavaritsky Institute of Geology and Geochemistry UB RASYekaterinburgRussia
  4. 4.Diamond and Precious Metal Geology Institute of the Siberian Branch of the Russian Academy of SciencesYakutskRussia

Personalised recommendations