Advertisement

Mineralogy and Petrology

, Volume 113, Issue 5, pp 625–649 | Cite as

Insights on the process of two-stage coronae formation at olivine-plagioclase contact in mafic dyke from Palghat Cauvery Shear Zone, southern India

  • Meenakshi Banerjee
  • Upama DuttaEmail author
  • R. Anand
  • Zachary D. Atlas
Original Paper
  • 77 Downloads

Abstract

Coronae between olivine and plagioclase are a common replacement texture in mafic rocks by magmatic and metamorphic processes. Mafic dykes from Palghat Cauvery Shear Zone (PCSZ) of the granulite terrane of southern India display such multilayer coronae between olivine (Ol) and plagioclase (Pl), composed of orthopyroxene-magnetite (OM) and amphibole (Prg). Deformation twins, kinking, bending and fractures in plagioclase laths suggest that the rock underwent post-emplacement deformation. However, amphibole in the plagioclase fractures and preservation of delicate coronae texture indicate that the replacement texture grew in a static condition. Field occurrence and textural relations suggest that the coronae developed in two stages: (1) Stage-I: Ol → OM, followed by (2) Stage-II: OM + Pl = Prg during rehydration of the granulite host rock. Balanced chemical reactions and formation of hydrous amphibole at the expense of anhydrous reactants during Stage-II demonstrates that replacement of earlier minerals occurred in a fluid-present open system. Results from the pseudosection and the μMgO–μCaO phase diagram, suggest fluid played a crucial role in the transition from Stage-I to Stage-II corona at a P-T condition of ~650 ± 50 °C and 5.5–6 kbar. The multilayer coronae is likely to have resulted from late Neoproterozoic thermal metamorphism of granulite terrane of southern India during Pan-African orogeny.

Keywords

Pan-African orogeny Corona Mafic Cauvery Pseudomorph 

Notes

Acknowledgements

M.B., U.D. and R.A. acknowledge CRF facility hosted in IIT (ISM), Dhanbad. Z.A. acknowledges the support from School of Geosciences, University of South Florida. U.D. acknowledges the financial support from SERB (SR/FTP/ES/115/2012), New Delhi. U.D. expresses sincere gratitude to Sengupta, P. for providing some of the samples and data for this study. We want to thank Racek, M. and Sharkov, E. V. for their critical review on the earlier versions of the manuscript. Broekmans, M. A.T.M. and Faryad, S. W. are thanked for their editorial comments and many helpful suggestions on the manuscript. We thank Sengupta, P., Karmakar, S., Mukhopadhyay, D. and Bhui, U. K. for their valuable opinion on several aspects of this work.

References

  1. Ambler EP, Ashley PM (1977) Vermicular orthopyroxene-magnetite symplectites from the Wateranga layered mafic intrusion, Queensland, Australia. Lithos 10:163–172CrossRefGoogle Scholar
  2. Ashworth JR (1986) The role of magmatic reaction, diffusion, and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway: a discussion. Mineral Mag 50:469–473CrossRefGoogle Scholar
  3. Barton M, Van Gaans C (1988) Formation of orthopyroxene Fe-Ti oxide symplectites in Precambrian intrusives, Rogaland, southwestern Norway. Am Mineral (73):1046–1953Google Scholar
  4. Bhaskar Rao YJ, Chetty TRK, Janardhan AS, Gopalan K (1996) Sm–Nd and Rb–Sr ages and P-T-history of the Archaean Sittampundi and Bhavani layered metaanorthosite complexes in Cauvery shear zone, South India: evidence for Neoproterozoic reworking of Archaean crust. Contrib Mineral Petrol 125:237–250CrossRefGoogle Scholar
  5. Bosi F, Biagioni C, Pasero M (2019) Nomenclature and classification of the spinel supergroup. Eur J Mineral 31:183–192CrossRefGoogle Scholar
  6. Brandt S, Raith MM, Schenk V, Sengupta P, Srikantappa C, Gerdes A (2014) Crustal evolution of the southern granulite terrane, South India: new geochronological and geochemical data for felsic orthogneisses and granites. Precambrian Res 246:91–122CrossRefGoogle Scholar
  7. Braun I, Kriegsman LM (2003) Proterozoic crustal evolution of southernmost India and Sri Lanka. Geological Society of London 206:169–202CrossRefGoogle Scholar
  8. Burns LE (1985) The border ranges ultramafic and mafic complex, south-Central Alaska: cumulate fractionates of island-arc volcanics. Can J Earth Sci 22:1020–1038CrossRefGoogle Scholar
  9. Candia FMA, Mazzucchelli M, Siena F (1989) Sub-solidus reactions and corona structures in the Niquelândia layered complex (Central Goiás, Brazil). Miner Petrol 40:17–37CrossRefGoogle Scholar
  10. Chetty TRK (1996) Proterozoic shear zones in southern granulite terrain, India. The Archaean and Proterozoic Terrains in Southern India within East Gondwana 3:77–89Google Scholar
  11. Chowdhury, P, Talukdar, M, Sengupta, P, Sanyal S, and Mukhopadhyay, D (2013): Controls of P-T path and element mobility on the formation of corundum pseudomorphs in Paleoproterozoic high-pressure anorthosite from Sittampundi, Tamil Nadu, India. Am Mineral (98/10): 1725–1737Google Scholar
  12. Claeson DT (1998) Coronas, reaction rims, symplectites and emplacement depth of the Rymmen gabbro, Transscandinavian Igneous Belt, southern Sweden. Mineral Mag 62:743–757CrossRefGoogle Scholar
  13. Clark C, Collins AS, Santosh M, Taylor R, Wade BP (2009a) The P–T–t architecture of a Gondwanan suture: REE, U–Pb and Ti-in-zircon thermometric constraints from the Palghat Cauvery shear system, South India. Precambrian Res 174:129–144CrossRefGoogle Scholar
  14. Clark C, Collins AS, Timms NE, Kinny PD, Chetty TRK, Santosh M (2009b) SHRIMP U–Pb age constraints on magmatism and high-grade metamorphism in the Salem block, southern India. Gondwana Res 16:27–36CrossRefGoogle Scholar
  15. Collins AS, Windley BF (2002) The tectonic evolution of central and northern Madagascar and its place in the final assembly of Gondwana. J Geol 110:325–340CrossRefGoogle Scholar
  16. Collins AS, Clark C, Sajeev K, Santosh M, Kelsey DE, Hand M (2007) Passage through India: the Mozambique Ocean suture, high pressure granulites and the Palghat-Cauvery shear system. Terra Nova 19(2):141–147CrossRefGoogle Scholar
  17. Collins AS, Clark C, Plavsa D (2014) Peninsular India in Gondwana: the tectonothermal evolution of the southern granulite terrain and its Gondwanan counterparts. Gondwana Res 25(1):190–203CrossRefGoogle Scholar
  18. Cruciani G, Franceschelli M, Groppo C, Brogioni N, Vaselli O (2008) Formation of clinopyroxene + spinel and amphibole + spinel symplectites in coronitic gabbros from Sierra de San Luis (Argentina): a key to post-magmatic evolution. J Metamorph Geol 26:759–774CrossRefGoogle Scholar
  19. Dasgupta S, Sengupta P, Mondal A, Fukuoka M (1993) Mineral chemistry and reaction textures in metabasites from the eastern Ghats belt, India and their implications. Mineral Mag 57:113–120CrossRefGoogle Scholar
  20. De Haas GJL, Nijland TG, Valbracht PJ, Maijer C, Verschure R, Andersen T (2002) Magmatic versus metamorphic origin of olivine-plagioclase coronas. Contrib Mineral Petrol 143(5):537–550CrossRefGoogle Scholar
  21. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435CrossRefGoogle Scholar
  22. Dutta U, Bhui UK, Sengupta P, Sanyal S, Mukhopadhyay D (2011) Magmatic and metamorphic imprints in 2.9 Ga chromitites from the Sittampundi layered complex, Tamil Nadu, India. Ore Geol Rev 40:90–107CrossRefGoogle Scholar
  23. Esbensen KH (1978) Coronites from the Fongen gabbro complex, Trondheim region, Norway: role of water in olivine-plagioclase reaction. Neues Jahrbuch für Mineralogie – Abhandlungen (132):113–135Google Scholar
  24. Faryad SW, Kachlik V, Sláma J, Hoinkes G (2015) Implication of corona formation in a metatroctolite to the granulite facies overprint of HP–UHP rocks in the Moldanubian zone (bohemian massif). J Metamorph Geol 33:295–310CrossRefGoogle Scholar
  25. Fisher GW (1989) Matrix analysis of metamorphic mineral assemblages and reactions. Contrib Mineral Petrol 102(1):69–77CrossRefGoogle Scholar
  26. Frodesen S (1968) Coronas around olivine in a small gabbro intrusion, Bamble area, South Norway. Nor Geol Tidsskr (48):201–206Google Scholar
  27. Fusseis F, Liu J, Hough RM, De Carlo F (2009) Creep cavitation can establish a dynamic granular fluid pump in ductile shear zones. Nature 459:974–977CrossRefGoogle Scholar
  28. Gallien F, Mogessie A, Hauzenberger CA, Bjerg E, Delpino S, Castro De Machuca B (2012) On the origin of multi-layer coronas between olivine and plagioclase at the gabbro–granulite transition, Valle Fértil–La Huerta ranges, San Juan Province, Argentina. J Metamorph Geol 30(3):281–302CrossRefGoogle Scholar
  29. Ghosh JG, de Wit MJ, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the southern granulite terrain of India, with implications for Gondwana studies. Tectonics 23(3):1–38CrossRefGoogle Scholar
  30. Gill, JB (1981) What is “typical Calcalkaline andesite”? In: Orogenic Andesites and plate tectonics. Springer publishers, Heidelberg/DE. Minerals and Rocks (16): 1–12Google Scholar
  31. Glorie S, De Grave J, Singh T, Payne JL, Collins AS (2014) Crustal root of the eastern Dharwar craton: zircon U–Pb age and Lu–Hf isotopic evolution of the East Salem block, Southeast India. Precambrian Res 249:229–246CrossRefGoogle Scholar
  32. Goode ADT (1974) Oxidation of natural olivines. Nature 248(5448):500–501CrossRefGoogle Scholar
  33. Green ECR, Holland TJB, Powell R (2007) An order-disorder model for omphacitic pyroxenes in the system jadeite–diopside–hedenbergite–acmite, with applications to eclogitic rocks. Am Mineral 92:1181–1189CrossRefGoogle Scholar
  34. Green ECR, White RW, Diener JFA, Powell R, Holland TJB, Palin RM (2016) Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J Metamorph Geol 34:845–869CrossRefGoogle Scholar
  35. Griffin WL (1971) Genesis of coronas in anorthosites of the upper Jotun nappe, Indre Sogn, Norway. J Petrol 12:219–243CrossRefGoogle Scholar
  36. Griffin WL, Heier KS (1973) Petrological implications of some corona structures. Lithos 6(4):315–335CrossRefGoogle Scholar
  37. Haggerty SE, Baker I (1967) The alteration of olivine in basaltic and associated lavas. Part I: high temperature alteration. Contrib Mineral Petrol 16(16):233–257CrossRefGoogle Scholar
  38. Harris NBW, Santosh M, Taylor PN (1994) Crustal evolution in South India: constraints from Nd isotopes. J Geol 102(2):139–150CrossRefGoogle Scholar
  39. Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch M (2012) IMA report – nomenclature of the amphibole supergroup. Am Mineral (97):2031–2048Google Scholar
  40. Hoisch TD, Wells ML, Beyene MA, Styger S, Vervoort JD (2014) Jurassic Barrovian metamorphism in a western U.S. cordilleran metamorphic core complex, Funeral Mountains, California. Geology 42:399–402CrossRefGoogle Scholar
  41. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol (16):309–343Google Scholar
  42. Holland TJB, Powell R (2003) Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib Mineral Petrol 145:492–501CrossRefGoogle Scholar
  43. Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Metamorph Geol 29:333–383CrossRefGoogle Scholar
  44. Holland TJB, and Powell R (2015): A program to calculate activities of mineral endmembers from chemical analyses University of Cambridge. Retrieved from http://www.esc.cam.ac.uk/research/research-groups/research-projects/tim-hollands-software-pages/ax
  45. Humphries, DW (1992) The preparation of thin sections of rocks, minerals and ceramics. Royal Microscopical Society, Oxford Science Publications, Microscopy Handbooks (24): 83 ppGoogle Scholar
  46. Jašarová P, Racek M, Jeřábek P, Holub FV (2016) Metamorphic reactions and textural changes in coronitic metagabbros from the Teplá crystalline and Mariánské Lázně complexes, bohemian massif. J Geosci 61:193–219CrossRefGoogle Scholar
  47. Jayananda M, Peucat JJ (1996) Geochronological framework of southern India, in the Archean and Proterozoic terrains of southern India within East Gondwana. Gondwana Res 3:53–75Google Scholar
  48. Joesten R (1974) Local equilibrium and metasomatic growth of zoned calcsilicate nodules from a contact aureole, Christmas Mountains, big bend region, Texas. Am J Sci 274:876–901CrossRefGoogle Scholar
  49. Joesten R (1977) Evolution of mineral assemblage zoning in diffusion metasomatism. Geochim Cosmochim Acta 41:649–670CrossRefGoogle Scholar
  50. Joesten R (1986) The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risör, Norway. Mineral Mag 50:441–467CrossRefGoogle Scholar
  51. Johansson Å, Andersson UB, Hålenius U (2012) Petrogenesis and geotectonic setting of early Svecofennian arc cumulates in the Roslagen area, east-central Sweden. Geol J 47:557–593CrossRefGoogle Scholar
  52. Kendrick JL, Jamieson RA (2016) The fate of olivine in the lower crust: Pseudomorphs after olivine in coronitic metagabbro from the Grenville Orogen, Ontario. Lithos 260:356–370CrossRefGoogle Scholar
  53. Khan, MA, Jan, MQ, Windley, BF, Tarney, J, and Thirlwall, MF (1989): The Chilas Mafic-Ultramafic Igneous Complex; The root of the Kohistan Island Arc in the Himalaya of northern Pakistan. Geol Soc Am (232): 75–94Google Scholar
  54. Koizumi T, Tsunogae T, Santosh M, Tsutsumi Y, Chetty TRK, Saitoh Y (2014) Petrology and zircon U–Pb geochronology of metagabbros from a mafic–ultramafic suite at Aniyapuram: Neoarchean to Early Paleoproterozoic convergent margin magmatism and Middle Neoproterozoic high-grade metamorphism in southern India. J Asian Earth Sci 95:51–64CrossRefGoogle Scholar
  55. Koshimoto S, Tsunogae T, Santosh M (2004) Sapphirine and corundum bearing ultrahigh temperature rocks from the Palghat-Cauvery shear system, southern India. J Mineral Petrol Sci 99(5):298–310CrossRefGoogle Scholar
  56. Lang HM, Rice JM (1985) Regression modelling of metamorphic reactions in metapelites, Snow Peak, northern Idaho. J Petrol 26:857–887CrossRefGoogle Scholar
  57. Lang HM, Watcher AJ, Peterson VL, Ryan JG (2004) Coexisting clinopyroxene/spinel and amphibole/spinel symplectites in metatroctolite from the Buck Creek ultramafic body, North Carolina blue ridge. Am Mineral 89:20–30CrossRefGoogle Scholar
  58. Larikova TL, Zaraisky GP (2009) Experimental modelling of corona textures. J Metamorph Geol 27:139–151CrossRefGoogle Scholar
  59. Locock AJ (2014) An excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11CrossRefGoogle Scholar
  60. Markl G, Foster CT, Bucher K (1998) Diffusion-controlled olivine corona textures in granitic rocks from Lofoten, Norway: calculation of Onsager diffusion coefficients, thermodynamic modelling and petrological implications. J Metamorph Geol 16:607–623CrossRefGoogle Scholar
  61. McSween HY, Nystrom PG (1979) Mineralogy and petrology of the Dutchmans Creek gabbroic intrusion, S Carolina. Am Mineral (64):531–545Google Scholar
  62. Meiβner B, Deters P, Srikantappa C, Köhler H (2002) Geological evolution of the Moyar, Bhavani and Palghat shear zones of southern India: implications for Gondwana correlation. Precambrian Res (114):149–175Google Scholar
  63. Morimoto N (1988) Nomenclature of pyroxenes. Mineral Petrol 39:55–76Google Scholar
  64. Morton RD, Batey RH, O’Nions RK (1970) Geological investigations in the Bamble sector of the Fennoscandian shield in South Norway I. the geology of eastern Bamble sector. Norges Geologiske Undersokelse Bulletin (263):1–72Google Scholar
  65. Mongkoltip P, Ashworth JR (1983) Quantitative estimation of an open-system symplectite-forming reaction: restricted diffusion of Al and Si in coronas around olivine. J Petrol 24:635–661CrossRefGoogle Scholar
  66. Muir ID, Tilley CE, Scoon JH (1957) The picrite-basalts of Kilauea, [part] 1 of contributions to the petrology of Hawaiian basalts. Am J Sci 255(4):241–253CrossRefGoogle Scholar
  67. Mukai H, Austrheim H, Putnis CV, Putnis A (2014) Textural evolution of plagioclase feldspar across a shear zone: implications for deformation mechanism and rock strength. J Petrol 55:1457–1477CrossRefGoogle Scholar
  68. Mukhopadhyay D, Kumar PS, Srinivasan R, Bhattacharya T (2003) Nature of the Palghat-Cauvery lineament in the region south of Namakkal, Tamil Nadu: implications for terrane assembly in the south Indian granulite province. J Geol Soc India 50:279–296Google Scholar
  69. Murthy MVN (1958) Coronites from India and their bearing on the origin of coronas. Geol Soc Am Bull 68:23–28CrossRefGoogle Scholar
  70. Nasipuri P, Bhattacharya A, Das S (2009) Metamorphic reactions in dry and aluminous granulites: a Perple_X P–T pseudosection analysis of the influence of effective reaction volume. Contrib Mineral Petrol 157:301–311CrossRefGoogle Scholar
  71. Nishimiya Y, Tsunogae T, Santosh M (2008) Petrology and fluid inclusions of garnet-clinopyroxene rocks from Paramati in the Palghat-Cauvery Shear Zone system, southern India. J Mineral Petrol Sci 103(5):354–360CrossRefGoogle Scholar
  72. Nishimiya Y, Tsunogae T, Santosh M (2010) Sapphirine+quartz corona around magnesian (X Mg~ 0.58) staurolite from the Palghat-Cauvery Suture Zone, southern India: evidence for high-pressure and ultrahigh-temperature metamorphism within the Gondwana suture. Lithos (114/3):490–502Google Scholar
  73. Papike JJ (1987) Chemistry of the rock-forming silicates: Ortho, ring, and single-chain structures. Rev Geophys 25(7):1483–1526CrossRefGoogle Scholar
  74. Papike JJ (1988) Chemistry of the rock-forming silicates: multiple-chain, sheet, and framework structures. Rev Geophys 26(3):407–444CrossRefGoogle Scholar
  75. Peucat JJ, Jayananda M, Chardon D, Capdevila R, Fanning CM, Paquette JL (2013) The lower crust of the Dharwar craton, southern India: patchwork of Archean granulitic domains. Precambrian Res 227:4–28CrossRefGoogle Scholar
  76. Plavsa D, Collins AS, Foden JD, Clark C (2015) The evolution of a Gondwanan collisional orogen: a structural and geochronological appraisal from the southern granulite terrane, South India. Tectonics 34(5):820–857CrossRefGoogle Scholar
  77. Polat A, Fryer BJ, Samson IM, Weisener C, Appel PWU, Frei R, Windley BF (2012) Geochemistry of ultramafic rocks and hornblendite veins in the Fiskenæsset layered anorthosite complex, SW Greenland: evidence for hydrous upper mantle in the Archean. Precambrian Res 214-215(214–215):124–153CrossRefGoogle Scholar
  78. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘PAP’. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75CrossRefGoogle Scholar
  79. Radhakrishna T, Maluski H, Mitchell JG, Joseph M (1999) 40Ar/39Ar and K/Ar geochronology of the dykes from the south Indian granulite terrain. Tectonophysics 304:109–129CrossRefGoogle Scholar
  80. Raith MM, Sengupta P, Kooijman E, Upadhyay D, Srikantappa C (2010) Corundum leucosome–bearing aluminous gneiss from Ayyarmalai, southern granulite terrane, India: a textbook example of vapour phase-absent muscovite-melting in silica undersaturated aluminous rocks. Am Mineral 95:897–907CrossRefGoogle Scholar
  81. Raith MM, Brandt S, Sengupta P, Berndt J, John T, Srikantappa C (2016) Element mobility and behaviour of zircon during HT metasomatism of ferroan basic granulite at Ayyarmalai, South India: evidence for polyphase Neoarchaean crustal growth and multiple metamorphism in the northeastern Madurai Province. J Petrol 57(9):1729–1774Google Scholar
  82. Ram Mohan M, Satyanarayana M, Santosh M, Sylvester PJ, Tubrett M, Lam R (2013) Neoarchean suprasubduction zone arc magmatism in southern India: geochemistry, zircon U–Pb geochronology and Hf isotopes of the Sittampundi Anorthosite complex. Gondwana Res 23:539–557CrossRefGoogle Scholar
  83. Reynolds RC, Frederickson AF (1962) Corona development in Norwegian hyperites and their bearing upon the metamorphic facies concept. Geol Soc Am Bull 73(1):59CrossRefGoogle Scholar
  84. Rivers T, Mengel FC (1988) Contrasting assemblages and petrogenetic evolution of corona and noncorona gabbros in the Grenville Province of western Labrador. Can J Earth Sci 25:1629–1648CrossRefGoogle Scholar
  85. Ruiz-Agudo E, Putnis CV, Putnis A (2014) Coupled dissolution and precipitation at mineral–fluid interfaces. Chem Geol 383:132–146CrossRefGoogle Scholar
  86. Saitoh Y, Tsunogae T, Santosh M, Chetty TRK, Horie K (2011) Neoarchean high-pressure metamorphism from the northern margin of the Palghat-Cauvery suture zone, southern India. J Asian Earth Sci 42(42):268–285CrossRefGoogle Scholar
  87. Sajeev K, Windley BF, Connolly JAD, Kon Y (2009) Retrogressed eclogite (20 kbar, 1020°C) from the Neoproterozoic Palghat-Cauvery suture zone, southern India. Precambrian Res 171:23–36CrossRefGoogle Scholar
  88. Santosh M, Maruyama S, Sato K (2009a) Anatomy of a Cambrian suture in Gondwana: Pacific type orogeny in southern India? Gondwana Res 16:321–341CrossRefGoogle Scholar
  89. Santosh M, Tsunogae T, Tsutsumi Y, Imamura MM (2009b) Texturally controlled monazite chronology of ultrahigh-temperature granulites from southern India: implications for the timing of Gondwana assembly. Island Arc 18(2):248–265CrossRefGoogle Scholar
  90. Santosh M, Xiao W, Tsunogae T, Chetty TRK, Yellappa T (2012) The Neoproterozoic subduction complex southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly. Precambrian Res 192–195:190–208CrossRefGoogle Scholar
  91. Sederholm J (1916) On synartectic minerals. Comm Géol Fin Bull (48):1–59Google Scholar
  92. Sengupta P, Bhui UK, Braun I, Dutta U, Mukhopadhyay D (2009a) Chemical substitutions, paragenetic relations and physical conditions of högbomite in Sittampundi layered anorthosite complex, South India. Am Mineral 94:1520–1534CrossRefGoogle Scholar
  93. Sengupta P, Dutta U, Bhui U, Mukhopadhyay D (2009b) Genesis of wollastonite- and grandite-rich skarns in a suite of marble–calc–silicate rocks from Sittampundi, Tamil Nadu: constraints on the P–T–fluid regime in parts of the pan-African mobile belt of South India. Miner Petrol 95:179–200CrossRefGoogle Scholar
  94. Sengupta, P, Raith, MM, Kooijman, E, Talukdar, M, Chowdhury, P, Sanyal, and S Mukhopadhyay, D (2015): Provenance, timing of sedimentation and metamorphism of metasedimentary rock suites from the Southern Granulite Terrane, India. Geological Society, London, Memoirs (43/1): 297–308Google Scholar
  95. Shimpo M, Tsunogae T, Santosh M (2006) First report of garnet–corundum rocks from southern India: implications for prograde high-pressure (eclogite-facies?) metamorphism. Earth Planet Sci Lett 242(1):111–129CrossRefGoogle Scholar
  96. Spruzeniece L, Piazolo S, Daczko N, Kilburn MR, Putnis A (2016) Symplectite formation in the presence of a reactive fluid: insights from hydrothermal experiments. J Metamorph Geol 35(3):281–299CrossRefGoogle Scholar
  97. Srikantappa, C, Srinivas, G, Basavarajappa, HT, Prakash Narasimha, KN, and Basavalingu, B (2003): Metamorphic evolution and fluid regime in the deep continental crust and long the N–S Geotransect from Vellar to Dharapuram, southern India. In M. Ramakrishnan, Ed., Tectonics of the Southern Granulite Terrain. Geological Society of India 50: pp 319–373Google Scholar
  98. Svahnberg H, Piazolo S (2013) Interaction of chemical and physical processes during deformation at fluid-present conditions: a case study from an anorthosite-leucogabbro deformed at amphibolite facies conditions. Contrib Mineral Petrol 165:543–562CrossRefGoogle Scholar
  99. Torres-Roldan RL, Garcia-Casco A, Garcia-Sanchez PA (2000) C-space: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms. Comput Geosci 26:779–793CrossRefGoogle Scholar
  100. Tuisku P, Makkonen HV (1999) Spinel-bearing symplectites in Palaeoproterozoic ultramafic rocks from two different geological settings in Finland: thermobarometric and tectonic implications. Geol Fören Stockh Förh 121:293–300Google Scholar
  101. Turner SP, Stuewe K (1992) Low-pressure corona textures between olivine and plagioclase in unmetamorphosed gabbros from Black Hill, South Australia. Mineral Mag 56:503–509CrossRefGoogle Scholar
  102. Van Lamoen H (1979) Coronas in olivine gabbros and iron ores from Susimaki and Riuttamaa, Finland. Contrib Mineral Petrol 68:259–268CrossRefGoogle Scholar
  103. White RW, Powell R, Clarke GL (2002) The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave block Central Australia: constraints from mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J Metamorph Geol 20:41–55CrossRefGoogle Scholar
  104. White RW, Powell R, Baldwin JA (2008) Calculated phase equilibria involving chemical potentials to investigate the textural evolution of metamorphic rocks. J Metamorph Geol 26:181–198CrossRefGoogle Scholar
  105. White RW, Powell R, Holland TJB, Johnson TE, Green ECR (2014) New mineral activity–composition relations for thermodynamic calculations in metapelitic systems. J Metamorph Geol 32:261–286CrossRefGoogle Scholar
  106. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  107. Yellappa T, Venkatasivappa V, Koizumi T, Chetty TRK, Santosh M, Tsunogae T (2014) The mafic–ultramafic complex of Aniyapuram, Cauvery suture zone, southern India: petrological and geochemical constraints for Neoarchean suprasubduction zone tectonics. J Asian Earth Sci 95:81–98CrossRefGoogle Scholar
  108. Zeck HP, Shenouda HH, Rønsbo JG, Poorter RPE (1982) Hypersthene-ilmenite (/magnetite) symplectites in coronitic olivine-gabbronorites. Lithos 15(3):173–182CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied GeologyIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  2. 2.School of GeosciencesUniversity of South FloridaTampaUSA

Personalised recommendations