A Ta,Ti–rich oxide mineral assemblage from the Nancy beryl–columbite–phosphate granitic pegmatite, San Luis, Argentina

  • Miguel Ángel GalliskiEmail author
  • María Florencia Márquez-Zavalía
  • Radek Škoda
  • Milan Novák
  • Renata Čopjaková
  • Diego Sebastián Pagano
Original Paper


An assemblage of tantalite-(Mn), tantalian rutile, tapiolite-(Fe), titanowodginite, ferrotitanowodginite, and hydroxycalciomicrolite occurs in the Nancy granitic pegmatite, San Luis range, Argentina. The Nancy beryl-type, beryl–columbite–phosphate subtype of LCT (Li-Cs-Ta) rare-element pegmatite was emplaced in the Paleozoic Conlara pegmatitic field. The assemblage occurs at the core margin of the pegmatite, forming an irregularly shaped, 18 by 6 cm nodule. The chemical composition of tantalite-(Mn) shows median Ta# [= (Ta/(Ta + Nb) apfu (atoms per formula unit)] and Mn# [= (Mn/(Mn + FeT) apfu] values of 0.57 and 0.64, respectively; Ti, U and Zr show maximum and [median] contents of: 3.37 [1.25] wt.% TiO2, 0.58 [0.24] wt.% UO2, and 0.72 [0.50] wt.% ZrO2. The unit-cell parameters indicate a moderately ordered structure. Tantalian rutile occurs as anhedral grains replacing tantalite-(Mn), associated with hydroxycalciomicrolite. Its chemical composition shows moderate to high Ti contents, with a maximum and [median] of 64.77 [38.67] wt.% TiO2. The proportion of Ta is very high, with 49.67 [39.59] wt.% Ta2O5. Tapiolite-(Fe), with 82.49 [81.86] wt.% Ta2O5, 2.51 [2.33] wt.% Nb2O5, 0.94 [0.79] wt.% TiO2, and 13.31 [13.18] wt.% FeO, has uniform Ta# and Mn# values, 0.95 and 0.09, respectively. Titanowodginite shows Ta# values ranging from 0.82 to 0.88, whereas in ferrotitanowodginite it ranges from 0.88 to 0.94. The Mn# value is similar in titanowodginite (0.51–0.64), and decreases in the ferrotitanowodginite (0.04 to 0.41). These minerals form a replacement sequence of tantalite-(Mn). Hydroxycalciomicrolite occurs in two generations: I and II. The dominant A cation is Ca, with a median value of 14.39 wt.% CaO. The MnO content, with a median of 1.16 wt.% MnO, is relatively constant. The amount of UO2 is usually below 3 wt.%, but locally attains 6.9 wt.%, and exceptionally 43.6 wt.%, in irregular rims that show a low analytical total, giving compositions that depart from the expected stoichiometry; it is clearly a subsolidus phase. In the more plausible explanation for the evolution of this assemblage, the magmatic crystallization of tantalite-(Mn) was followed during the early subsolidus stage by its partial replacement by tantalian rutile + tapiolite-(Fe) + titanowodginite + ferrotitanowodginte, associated with hydroxycalciomicrolite I, and later, by hydroxycalciomicrolite II produced by the influx of a late Fe–Ti–Ca-bearing fluid phase likely entering the pegmatite from the wall rocks.


Tantalite-(Mn) Tantalian rutile Wodginite-group minerals Hydroxycalciomicrolite Rare-element granitic pegmatite Sierras Pampeanas Argentina 



The authors are very grateful to the Ministerio de Ciencia, Tecnología e Innovación Productiva de la República Argentina (MINCYT), Argentina and the Ministry of Education, Youth and Sports (MEYS), Czech Republic cooperation projects ARC/13/14 and 7AMB14AR006, which facilitated the execution of this research project. Grant 112 201201 554 from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) to Miguel A. Galliski supported the field work. The authors are grateful to Robert F. Martin for the editorial revision and improvement of the manuscript; Frank Melcher and an anonymous reviewer provided thorough reviews of the manuscript. We are grateful to Maarten A.T.M. Broekmans and Christoph Hauzenberger who provided editorial suggestions and corrections.


  1. Andrade MB, Yang H, Atencio D, Downs RT, Chukanov NV, Lemée-Cailleau MH, , Persiano AIC, Goeta AEJ, Ellena J (2013) Hydroxycalciomicrolite, Ca1.5Ta2O6(OH), a new member of the microlite group 2 from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Mineral Mag 81:555–564CrossRefGoogle Scholar
  2. Badanina EV, Sitnikova MA, Gordienko VV, Melcher F, Gäbler H-E, Lodziak J, Syritso LF (2015) Mineral chemistry of columbite–tantalite from spodumene pegmatites of Kolmozero, Kola peninsula (Russia). Ore Geol Rev 64:667–719CrossRefGoogle Scholar
  3. Beurlen H, Barreto SB, Silva D, Wirth R, Olivier P (2007) Titanian ixiolite- niobian rutile intergrowths from the Borborema Pegmatite Province, northeastern Brazil. Can Mineral 45:1367–1387CrossRefGoogle Scholar
  4. Breiter K, Škoda R, Uher P (2007) Nb–Ta–Ti–W–Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic. Miner Petrol 91:225–248CrossRefGoogle Scholar
  5. Černý P, Ercit TS (1985) Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites. Bull Mineral 108:499–532Google Scholar
  6. Černý P, Ercit TS (1989) Mineralogy of niobium and tantalum: crystal chemical relationships, paragenetic aspects and their economic implications. In: Möller P, Černý P, Saupé F (eds) Lanthanides, tantalum and niobium. Springer-Verlag, Berlin, pp 27–79Google Scholar
  7. Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026CrossRefGoogle Scholar
  8. Černý P, Cech F, Povondra P (1964) Review of ilmenorutile-strüverite minerals. Neues Jb Miner Abh 101:142–172Google Scholar
  9. Černý P, Paul BJ, Hawthorne FC, Chapman R (1981) A niobian-rutile – disordered columbite intergrowth from the Huron Claim pegmatite, southeastern Manitoba. Can Mineral 19:541–548Google Scholar
  10. Černý P, Ercit TS, Wise MA (1992a) The tantalite – tapiolite-(Fe) gap: natural assemblages versus experimental data. Can Mineral 30:587–596Google Scholar
  11. Černý P, Novák M, Chapman R (1992b) Effects of sillimanite-grade metamorphism and shearing on Nb,Ta-oxide minerals in granitic pegmatites: Maršíkov, northern Moravia, Czechoslovakia. Can Mineral 30:699–718Google Scholar
  12. Chudík P, Uher P, Gadas P, Škoda R, Pršek J (2011) Niobium-tantalum oxide minerals in the Jezuitske Lesy granitic pegmatite, Bratislava massif, Slovakia: Ta to Nb and Fe to Mn evolutionary trends in a narrow Be,Cs-rich and Li,B-poor dike. Miner Petrol 102:15–27CrossRefGoogle Scholar
  13. Craig JR, Vaughan DJ (1994) Ore microscopy and ore petrography, 2nd edn. John Wiley & Sons, Inc. New York, 434 ppGoogle Scholar
  14. Ercit TS, Černý P, Hawthorne FC (1992) The wodginite group III Classification and new species. Can Mineral 30:633–638Google Scholar
  15. Galliski MA (1994) La Provincia Pegmatítica Pampeana. I: Tipología y distribución de sus distritos económicos. Rev Asoc Geol Argent 49:99–112Google Scholar
  16. Galliski MA, Černý P (2006) Geochemistry and structural state of columbite-group minerals from granitic pegmatites of the Pampean ranges. Can Mineral 44:645–666CrossRefGoogle Scholar
  17. Galliski MA, Márquez-Zavalía MF, Černý P, Martínez V, Chapman R (2008) The Ta–Nb–Sn–Ti oxide-mineral paragenesis at La Viquita, a spodumene-bearing rare-element granitic pegmatite from San Luis, Argentina. Can Mineral 47:379–393CrossRefGoogle Scholar
  18. Galliski MA, Márquez-Zavalía MF, Černý P, Lira R (2016) Complex Nb–Ta–Ti–Sn oxide mineral intergrowths in La Calandria pegmatite, Cañada del Puerto, Córdoba, Argentina. Can Mineral 54:899–916CrossRefGoogle Scholar
  19. Heinmann A, Yonts JA, Galliski MA (2015) The composition of gahnite in granitic pegmatites from the Pampean Pegmatite Province, Argentina: implications for pegmatite fractionation. Can Mineral 53:1–26Google Scholar
  20. Heinrich EW (1951) Mineralogy of triplite. Am Mineral 36:256–271Google Scholar
  21. Laugier J, Bochu B (2003) CELREF – Programme d’affinement des paramètres de maille à partir d’un diagramme de poudre développé au Laboratoire des Matériaux et du Génie Physique, Ecole Nationale Supérieure de Physique de Grenoble (INPG) Domaine Universitaire BP 46, 38402, St. Marin d’Hères. Accessed on 3 Nov 2007
  22. Linnen RL, Keppler H (1997) Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust. Contrib Mineral Petrol 128:213–227CrossRefGoogle Scholar
  23. Lira R, Galliski MA, Bernard F, Roquet MB (2012) The intragranitic Potrerillos NYF pegmatites and their A-type host granites of the Las Chacras – Potrerillos batholith, Sierra de San Luis, Argentina. Can Mineral 50:1729–1750CrossRefGoogle Scholar
  24. Martin RF, De Vito C (2014) The late-stage miniflood of Ca in granitic pegmatites: an open system acid-reflux model involving plagioclase in the exocontact. Can Mineral 52:165–181CrossRefGoogle Scholar
  25. Melcher F, Graupner T, Gäbler H-E, Sitnikova M, Henjes-Kunst F, Oberthür T, Gerdes A, Dewaele S (2015) Tantalum–(niobium–tin) mineralisation in African pegmatites and rare metal granites: constraints from Ta–Nb oxide mineralogy, geochemistry and U–Pb geochronology. Ore Geol Rev 64:667–719CrossRefGoogle Scholar
  26. Melcher F, Graupner T, Gäbler H-E, Sitnikova M, Oberthür T, Gerdes A, Badanina E, Chudy T (2017) Mineralogical and chemical evolution of tantalum–(niobium–tin) mineralisation in pegmatites and granites. Part 2: worldwide examples (excluding Africa) and an overview of global metallogenetic patterns. Ore Geol Rev 89:946–987CrossRefGoogle Scholar
  27. Moore PB (1973) Pegmatite phosphates: descriptive mineralogy and crystal chemistry. Mineral Rec 4:103–130Google Scholar
  28. Novák, Černý P (1998) Niobium–tantalum oxide minerals from complex granitic pegmatites in the Moldanubicum, Czech Republic: primary versus secondary compositional trends. Can Mineral 36:659–672Google Scholar
  29. Novák M, Uher P, Černý P, Siman P (2000) Compositional variations in ferrotapiolite-(Fe) + tantalite pairs from the beryl-columbite pegmatite at Moravany and Váhom, Slovakia. Miner Petrol 69:295–306CrossRefGoogle Scholar
  30. Novák M, Černý P, Uher P (2003) Extreme variation and apparent reversal of Nb-Ta fractionation in columbite-group minerals from the Scheibengraben beryl-columbite pegmatite, Maršíkov, Czech Republic. Eur J Mineral 15:565–574CrossRefGoogle Scholar
  31. Novák M, Sejkora J, Škoda R, Budina V (2008) Bismutotantalite-stibiotantalite-stibiocolumbite assemblage from elbaite pegmatites at Molo near Momeik, northern Shan State, Myanmar. Neues Jb Miner Abh 185:17–26Google Scholar
  32. Novák M, Prokop J, Losos Z, Macek I (2017) Tourmaline, an indicator of external Mg contamination of granitic pegmatites from host serpentinite; examples from the Moldanubian zone, Czech Republic. Miner Petrol 111:625–641CrossRefGoogle Scholar
  33. Pouchou JL, Pichoir F (1985) “PAP” (phi-rho-z) procedure for improved quantitative microanalysis. In Microbeam Analysis (J.T. Armstrong, ed.). San Francisco Press, San Francisco, California (104–106)Google Scholar
  34. René M, Škoda R (2011) Nb–Ta–Ti oxides fractionation in rare-metal granites: Krásno-Horní Slavkov ore district, Czech Republic. Miner Petrol 103:37–48CrossRefGoogle Scholar
  35. Sims JP, Skirrow RG, Stuart-Smith PG, Lyons P (1997) Informe geológico y metalogenético de las Sierras de San Luis y Comechingones (San Luis y Córdoba), 1:250.000. Anales XXVIII, Inst, Geol. Rec. Min., SEGEMAR, Bs AsGoogle Scholar
  36. Steenken A, López de Luchi MG, Martino RD, Siegesmund S, Wemmer K (2005) SHRIMP dating of the El Peñón granite: a time marker at the turning point between the Pampean and Famatinian cycles within the Conlara metamorphic complex (sierra de San Luis, Argentina). Actas 16avo Congreso Geológico Argentino, La PlataGoogle Scholar
  37. Tait KT, Hawthorne FC, Černý P, Galliski MA (2004) Bobfergusonite from the Nancy pegmatite, San Luis range, Argentina: crystal-structure refinement and chemical composition. Can Mineral 42:705–716CrossRefGoogle Scholar
  38. Tindle AG, Breaks FW (1998) Oxide minerals of the Separation Rapids rare-element granitic pegmatite group, northwestern Ontario. Can Mineral 36:609–635Google Scholar
  39. Uher P, Černý P, Chapman R, Határ J, Miko O (1998) Evolution of Nb,Ta-oxide minerals in the Prašivá granitic pegmatites, Slovakia. I: primary Te, Ti-rich assemblage. Can Mineral 36:525–534Google Scholar
  40. van Lichtervelde M, Linnen R, Salvi S, Béziat D (2006) The role of metagabbro raft ontantalum mineralization in the Tanco granitic pegmatite Manitoba. Can Mineral 44:625–644CrossRefGoogle Scholar
  41. van Lichtervelde M, Salvi S, Béziat D, Linnen R (2007) Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the Tanco lower pegmatite, Manitoba, Canada. Econ Geol 102:257–276CrossRefGoogle Scholar
  42. Zhang AC, Wang RC, Hu H, Zhang H, Zhu JC, Chen XM (2004) Chemical evolution of Nb–Ta oxides and zircon from the Koktokay N° 3 granitic pegmatite, Altai, northwestern China. Mineral Mag 68:739–756CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IANIGLA, CCT-Mendoza CONICETMendozaArgentina
  2. 2.Mineralogía y Petrología, FADUniversidad Nacional de CuyoMendozaArgentina
  3. 3.Department of Geological SciencesMasaryk UniversityBrnoCzech Republic
  4. 4.Departamento de GeologíaUniversidad Nacional de San LuisSan LuisArgentina
  5. 5.CeReDeTeC, Facultad Regional MendozaUniversidad Tecnológica NacionalMendozaArgentina

Personalised recommendations