Advertisement

Mineralogy and Petrology

, Volume 113, Issue 5, pp 613–623 | Cite as

Compressibility and structure behaviour of maruyamaite (K-tourmaline) from the Kokchetav massif at high pressure up to 20 GPa

  • Anna Yu. LikhachevaEmail author
  • S. V. Rashchenko
  • Kira A. Musiyachenko
  • Andrey V. Korsakov
  • Ines E. Collings
  • Michael Hanfland
Original Paper
  • 86 Downloads

Abstract

The structural behaviour of maruyamaite (K-dominant tourmaline) X(K0.54Na0.28Ca0.19)Y(Mg1.3Al1.17Fe0.39Ti0.14)Z(Al5Mg)[Si5.95Al0.05O18](BO3)3V,W[O1.69(OH)2.31] from the ultrahigh-pressure metamorphic rocks of Kokchetav massif was studied using synchrotron based single-crystal diffraction up to 20 GPa. Within the whole pressure range the compression is regular and anisotropic, with the c direction being more compressible than the a direction. Fitting the V/P data with the 2nd and 3rd order Birch-Murnaghan equations of state gives: V0 = 1587.2(7) Å3, K0 = 115.6(9) GPa at fixed K′ = 4, and V0 = 1588(1) Å3, K0 = 112(3) GPa, K′ = 4.5(4). The bulk modulus values are slightly higher as compared to those found for dravite and cation-deficient synthetic K-dravite. The pressure evolution of the main structural parameters of K-tourmaline is similar to those of dravite. However, a minor change in the rigidity of local contacts of the X site with 6-membered ring, due to the presence of K, is apparently critical for stabilization of tourmaline structure within 15–20 GPa, which is evinced by the absence of the phase transition observed in dravite near 15.4 GPa. The stabilizing function of K becomes apparent at P > 15 GPa. The comparison of the HP structural behaviour of maruyamaite and dravite supports the recent suggestion that the large X site plays a secondary role in the elastic behaviour of tourmaline, compared to the octahedral framework. In addition, the present study reveals several new features of polyhedra distortions, which demonstrate their complex interaction on compression.

Keywords

Maruyamaite K-tourmaline High pressure single-crystal diffraction crystal structure refinement Kokchetav Massif northern Kazakhstan UHP metamorphism 

Notes

Acknowledgements

The authors are grateful to J. Cempírek and an anonymous reviewer for their helpful remarks, as well as to Yu.V. Seryotkin for valuable discussion of the results. This study is supported by the Russian Scientific Foundation (project 18-17-00186). Diffraction experiments were carried at the European Synchrotron Radiation Facility and supported by approval of ESRF Proposal ES-810.

Supplementary material

710_2019_672_Fig8_ESM.png (136 kb)
Fig. S1

F-f plots based on the Birch-Murnaghan 2nd order (a) and 3rd order (b) EoS fit of the pressure volume data for maruyamaite. (PNG 135 kb)

710_2019_672_MOESM1_ESM.eps (6.1 mb)
High Resolution Image (EPS 6239 kb)
710_2019_672_Fig9_ESM.png (33 kb)
Fig. S2

Pressure dependence of the T6O18 ring ditrigonality in maruyamaite (solid symbols) and dravite (empty symbols, data compiled from O’Bannon et al. 2018) structure. (PNG 32 kb)

710_2019_672_MOESM2_ESM.eps (63 kb)
High Resolution Image (EPS 63 kb)
710_2019_672_Fig10_ESM.png (42 kb)
Fig. S3

Pressure dependence of the T6O18 ring puckering in maruyamaite (solid symbols) and dravite (empty symbols, data compiled from O’Bannon et al. 2018) structure. (PNG 41 kb)

710_2019_672_MOESM3_ESM.eps (65 kb)
High Resolution Image (EPS 64 kb)
710_2019_672_MOESM4_ESM.zip (380 kb)
ESM 1 (ZIP 380 kb)

References

  1. Agilent (2012) CrysAlis PRO. Agilent Technologies, YarntonGoogle Scholar
  2. Angel RJ, Gonzalez-Platas J, Alvaro M (2014) EosFit-7c and a Fortran module (library) for equation of state calculations. Z Kristallogr 229:405–419Google Scholar
  3. Barton R (1969) Refinement of the crystal structure of buergerite and the absolute orientation of tourmalines. Acta Cryst B25:1524–1533CrossRefGoogle Scholar
  4. Berryman EJ, Wunder B, Rhede D (2014) Synthesis of K-dominant tourmaline. Am Mineral 99:539–542CrossRefGoogle Scholar
  5. Berryman EJ, Wunder B, Wirth R, Rhede D, Schettler G, Franz G, Heinrich W (2015) An experimental study on K and Na incorporation in dravitic tourmaline and insight into the formation environment of diamoniferous tourmaline from the Kokchetav, Massif, Kazakhstan. Contrib Mineral Petrol 169:28CrossRefGoogle Scholar
  6. Berryman EJ, Wunder B, Ertl A, Koch-Müller M, Rhede D, Scheidl K, Giester G, Heinrich W (2016) Influence of the X-site composition on tourmaline’s crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy. Phys Chem Miner 43:83–102CrossRefGoogle Scholar
  7. Berryman EJ, Zhang D, Wunder B, Duffy TS (2018) High-pressure compressibility of synthetic tourmaline of near end-member compositions. AGU 2018 AbstractsGoogle Scholar
  8. Bloodaxe ES, Hughes JM, Dyar MD, Grew ES, Guidotti CV (1999) Linking structure and chemistry in the Schorl-Dravite series. Am Mineral 84:922–928CrossRefGoogle Scholar
  9. Capillas C, Tasci ES, de la Flor G, Orobengoa D, Perez-Mato JM, Aroyo MI (2011) A new computer tool at the Bilbao Crystallographic Server to detect and characterize pseudosymmetry. Z Kristallogr 226:186–196CrossRefGoogle Scholar
  10. Dietrich RV (1985) The tourmaline group. Van Nostrand Reinhold Company Inc., New YorkCrossRefGoogle Scholar
  11. Dutrow BL, Henry DJ (2011) Tourmaline: A geologic DVD. Elements 7:301–306CrossRefGoogle Scholar
  12. Finkelstein GJ, Dera PK, Duffy TS (2015) High-pressure phases of cordierite from single-crystal X-ray diffraction to 15 GPa. Am Mineral 100:1821–1833CrossRefGoogle Scholar
  13. Foit FF (1989) Crystal chemistry of alkali-deficient schorl and tourmaline structural relationships. Am Mineral 74:422–431Google Scholar
  14. Gorskaya MG, Frank-Kamenetskaya OV, Rozhdestvenskaya IV, Frank-Kamenetskii VA (1982) Refinement of the crystal structure of Al-rich elbaite, and some aspects of the crystal chemistry of tourmalines. Soviet Physics Crystallogr 27:6Google Scholar
  15. Hawthorne FC (2002) Bond-valence constraints on the chemical composition of tourmaline. Can Mineral 40:789–797CrossRefGoogle Scholar
  16. Hawthorne FC, Dirlam DM (2011) Tourmaline, the indicator mineral: From atomic arrangement to Viking navigation. Elements 7:307–312CrossRefGoogle Scholar
  17. Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11:201–215CrossRefGoogle Scholar
  18. Hawthorne FC, MacDonald DJ, Burns PC (1993) Reassignment of cation site-occupancies in tourmaline: Al/Mg disorder in the crystal structure of dravite. Am Mineral 78:265–270Google Scholar
  19. Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. Rev Mineral 33:503–557Google Scholar
  20. Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline super-group minerals. Am Mineral 96:895–913CrossRefGoogle Scholar
  21. Hezel DC, Kalt A, Marschall HR, Ludwig T, Meyer H-P (2011) Major-element and Li, Be compositional evolution of tourmaline in an Stype granite–pegmatite system and its country rocks: an example from Ikaria, Aegean Sea, Greece. Can Mineral 49:321–340CrossRefGoogle Scholar
  22. Hwang SL, Shen P, Chu HT, Yui TF, Liou JG, Sobolev NV, Shatsky VS (2005) Crust-derived potassic fluid in metamorphic microdiamond. Earth Planet Sci Lett 231:295–306CrossRefGoogle Scholar
  23. Li H, Qin S, Zhu X, Liu J, Li X, Wu X, Wu Z (2004) In situ high-pressure X-ray diffraction of natural tourmaline. Nuclear techniques 27:919–922Google Scholar
  24. Liebau F (1985) Structural Chemistry of the Silicates. Structure, Bonding, and Classification. Springer-Verlag, BerlinGoogle Scholar
  25. Likhacheva AY, Rashchenko SV, Seryotkin YV (2012) The deformation mechanism of pressure-induced phase transition in dehydrated analcime. Mineral Mag 76:129–142CrossRefGoogle Scholar
  26. Ludwig T, Marschall HR, Pogge von Strandmann PAE, Shabaga BM, Fayek M, Hawthorne FC (2011) A secondary ion mass spectrometry (SIMS) re-evaluation of B and Li isotopic compositions of Cu-bearing elbaite from three global localities. Mineral Mag 75:2485–2494CrossRefGoogle Scholar
  27. Lussier AJ, Aguiar PM, Michaelis VK, Kroeker S, Herwig S, Abdu Y, Hawthorne FC (2008) Mushroom elbaite from the Kat Chay mine, Momeik, near Mogok, Myanmar: I. Crystal chemistry by SREF, EMPA, MAS NMR and Mössbauer spectroscopy. Mineral Mag 72:747–761CrossRefGoogle Scholar
  28. Lussier AJ, Abdu Y, Hawthorne FC, Michaelis VK, Aguiar PM, Kroeker S (2011) Oscillatory zoned liddicoatite from Anjanabonoina, central Madagascar. I. Crystal chemistry and structure by SREF and 11B and 27Al MAS NMR spectroscopy. Can Mineral 49:63–88CrossRefGoogle Scholar
  29. Lussier AJ, Hawthorne FC (2011) Oscillatory zoned liddicoatite from central Madagascar. II. Compositional variations and substitution mechanisms. Can Mineral 49:89–104CrossRefGoogle Scholar
  30. Lussier AJ, Ball NA, Hawthorne FC, Henry DJ, Shimizu R, Ogasawara Y, Ota T (2016) Maruyamaite, K(MgAl2)(Al5Mg)Si6O18(BO3)3(OH)3O, a potassium-dominant tourmaline from the ultrahigh-pressure Kokchetav massif, northern Kazakhstan: Description and crystal structure. Am Mineral 101:355–361CrossRefGoogle Scholar
  31. MacDonald DJ, Hawthorne FC (1995) The crystal chemistry of Si <−-> Al substitution in tourmaline. Can Mineral 33:849–858Google Scholar
  32. Mao HK, Xu J, Bell PM (1986) Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J Geophys Res 91:4673–4676CrossRefGoogle Scholar
  33. Marschall HR, Ludwig T, Altherr R, Kalt A, Tonarini S (2006) Syros metasomatic tourmaline: Evidence for very high-d11B fluids in subduction zones. J Petrol 47:1915–1942CrossRefGoogle Scholar
  34. Marschall HR, Jiang S-Y (2011) Tourmaline Isotopes: No element left behind. Elements 7:313–319CrossRefGoogle Scholar
  35. Martin RF (2011) Can Mineral 49, pp 1–405Google Scholar
  36. Merlini M, Hafland M (2013) Single-crystal diffraction at megabar conditions by synchrotron radiation. High Pressure Res 33:511–522CrossRefGoogle Scholar
  37. Meyer C, Wunder B, Meixner A, Romer RL, Heinrich W (2008) Boron isotope fractionation between tourmaline and fluid: an experimental re-investigation. Contrib Mineral Petrol 156:259–267CrossRefGoogle Scholar
  38. Miletich R, Gatta GD, Willi T, Mirwald PW, Lotti P, Merlini M (2014a) Cordierite under hydrostatic compression: anomalous elastic behavior as a precursor for a pressure-induced phase transition. Am Mineral 99:479–493CrossRefGoogle Scholar
  39. Miletich R, Scheidl KS, Schmitt M, Moissl AP, Pippinger T, Gatta GD, Schuster B, Trautmann C (2014b) Static elasticity of cordierite I: effect of heavy ion irradiation on the compressibility of hydrous cordierite. Phys Chem Miner 41:579–591CrossRefGoogle Scholar
  40. Novák M, Škoda P, Filip J, Macek I, Vaculovič T (2011) Compositional trends in tourmaline from intragranitic NYF pegmatites of the Třebíč Pluton, Czech Republic; electron microprobe, Mössbauer and LA-ICP-MS study. Can Mineral 49:359–380CrossRefGoogle Scholar
  41. O’Bannon E, Beavers CM, Kunz M, Williams Q (2018) High-pressure study of dravite tourmaline: Insights into the accommodating nature of the tourmaline structure. Am Mineral 101:1622–1633CrossRefGoogle Scholar
  42. O’Bannon E, Williams Q (2016) Beryl-II, a high-pressure phase of beryl: Raman and luminescence spectroscopy to 16.4 GPa. Phys Chem Miner 43:671–687CrossRefGoogle Scholar
  43. Ota T, Kobayashi K, Kunihiro T, Nakamura E (2008a) Boron cycling by subducted lithosphere; insights from diamondiferous tourmaline from the Kokchetav ultrahigh-pressure metamorphic belt. Geochim Cosmochim Acta 72:3531–3541CrossRefGoogle Scholar
  44. Ota T, Kobayashi K, Katsura T, Nakamura E (2008b) Tourmaline breakdown in a pelitic system: implications for boron cycling through subduction zones. Contrib Mineral Petrol 155:19–32CrossRefGoogle Scholar
  45. Pertlik F, Ertl A, Körner W, Brandstätter F, Schuster R (2003) Na-rich dravite in the marbles from Friesach. Chemistry and crystal structure. Neues Jahrbuch für Mineralogie Monatshefte, Carinthia, pp 277–288Google Scholar
  46. Petříček V, Dušek M, Palatinus L (2014) Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie - Crystalline Materials 229:345–352Google Scholar
  47. Prencipe M, Scanavino I, Nestola F, Merlini M, Civalleri B, Bruno M, Dovesi R (2011) High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Phys Chem Miner 38:223–239CrossRefGoogle Scholar
  48. Rothkirch A, Gatta GD, Meyer M, Merkel S, Merlini M, Liermann H-P (2013) Single-crystal diffraction at the Extreme Conditions beamline P02.2: procedure for collecting and analyzing high-pressure single-crystal data. J Synchrotron Radiat 20:711–720CrossRefGoogle Scholar
  49. Seryotkin YV, Bakakin VV, Bazhan IS (2005) The structure of dehydrated (Li0.7Na0.3)-analcime: a trigonal deformation of the framework and new low-coordinated non-framework positions. J Struct Chem 46:681–693Google Scholar
  50. Seryotkin YV, Bakakin VV (2008) The thermal behavior of secondary analcime and leucite derivate and its structural interpretation. Russ Geol Geophys 49:207–213CrossRefGoogle Scholar
  51. Seryotkin YV, Sokol EV, Bakakin VV, Likhacheva AY (2008) Pyrometamorphic osumilite: occurrence, paragenesis, and crystal structure as compared to cordierite. Eur J Mineral 20:191–198CrossRefGoogle Scholar
  52. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–776CrossRefGoogle Scholar
  53. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122CrossRefGoogle Scholar
  54. Schertl H-P, Sobolev NV (2013) The Kokchetav Massif, Kazakhstan: “Type locality” of diamond bearing UHP metamorphic rocks. J Asian Earth Sci 63:5–38CrossRefGoogle Scholar
  55. Shimizu R, Ogasawara Y (2005) Discovery of K-tourmaline in diamond- bearing quartz-rich rock from the Kokchetav Massif, Kazakhstan. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 150:141Google Scholar
  56. Shimizu R, Ogasawara Y (2013) Diversity of potassium-bearing tourmalines in diamondiferous Kokchetav UHP metamorphic rocks: a geochemical recorder from peak to retrograde metamorphic stages. J Asian Earth Sci 63:39–55CrossRefGoogle Scholar
  57. van Hinsberg V, Henry DJ, Marschall HR (2011) Tourmaline: an ideal indicator of its host environment. Can Mineral 49:1–16CrossRefGoogle Scholar
  58. van Hinsberg VJ, Schumacher JC (2007) Using estimated thermodynamic properties to model accessory phases: the case of tourmaline. J Metamorph Geol 25:769–779CrossRefGoogle Scholar
  59. Xu J, Kuang Y, Zhang B, Liu Y, Fan D, Li X, Xie H (2016) Thermal equation of state of natural tourmaline at high pressure and temperature. Phys Chem Miner 43:315–326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.V.S. Sobolev Institute of Geology and Mineralogy SibD RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.European Synchrotron Radiation FacilityGrenobleFrance

Personalised recommendations