Advertisement

Nanoporous nanocrystalline impact diamonds

  • Tatyana ShumilovaEmail author
  • Sergey Isaenko
Original Paper
  • 15 Downloads

Abstract

Complementary nano- and atomic-scale data from SEM, FIB, HRTEM, and EELS observations of after-coal impact diamonds from the giant Kara astrobleme are described, presenting their particular nano-sized porous polycrystalline structure, which consists of well-shaped single 20-30 nm nanocrystals that are free of deformation defects and do not contain lonsdaleite. The porous micro- and nanostructure is a special typomorphic feature of after-coal diamonds that suggests a crystallisation mechanism through short distance diffusion. The data for the after-coal impact diamonds presented here demonstrate their distinguishing characteristics from after-graphite impact diamonds, and have some similarity with the enigmatic carbonado, providing new insights to the origin of the latter.

Keywords

Nanostructure HRTEM SEM/FIB Carbon materials Nanocrystalline diamond Impact products 

Notes

Acknowledgments

The authors wish to thank F. Langenhorst, K. Pollok, and D. Harries for help with the SEM/FEIB/TEM studies, V.L. Masaitis for scientific consultations and discussions, the all-Russian field team members for help in the expedition, E.V. Susol for technical assistance; and S.S. Shevchuk, B.A. Makeev for preliminary analytical studies of the impact diamonds. T.Sh. thanks the DAAD foundation for financial support to visit the Jena University. We are grateful to an anonymous reviewer for advice on improving the paper. The work has been supported by the RFBR Project No. 17-05-00516 with partial support of the NIR No. AAAA-A17-117121270036-7.

References

  1. Beyerlein IJ, Zhang X, Misra A (2014) Growth Twins and Deformation Twins in Metals. Annu Rev Mater Res 44:329–363CrossRefGoogle Scholar
  2. Borimchuk NI, Zelyavskiy VB, Kurdyumov AV, Ostrovskaya NF, Trefilov VI, Yarosh VV (1991) Mechanism of direct phase transformations of soot and coal to diamond under impact pressing. Dokl Akad Nauk SSSR 321(1):95–98 (in Russian)Google Scholar
  3. Daulron TL (2001) Production of nanodiamonds by high-energy ion irradiation of graphiteat room temperature. Nucl Instr Meth Phys Res B 175(177):12–20CrossRefGoogle Scholar
  4. Daulton TL, Amari S, Scott AC, Hardiman M, Pinter N, Anderson RC (2016) Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas Impact Hypothesis. J Quat Sci.  https://doi.org/10.1002/jqs.2892
  5. DeCarli PS (1998) More on the possibility of impact origin of carbonado. AIP Conf Proc 429:681CrossRefGoogle Scholar
  6. El Goresy A, Gillet P, Chen M, Künstler F, Graup G, Stähle V (2001) In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries crater, Germany. Am Mineral 86:611–621CrossRefGoogle Scholar
  7. Gorshkov AI, Vinokurov SF, Ryabchikov ID, Bershov LV, Magazina LO, Sivtsov AV et al (2000) Mineralogical and geochemical features of G-gold-bearing carbonado from Poxoreo District, Mato-Grosso State, Brazil. Geochem Int 38(1):1–12Google Scholar
  8. Haggerty SE (2014) Carbonado: Physical and chemical properties, a critical evaluation of proposed origins, and a revised genetic model. Earth Sci Rev 130:49–72CrossRefGoogle Scholar
  9. Haggerty SE (2017) Carbonado diamond: a review of properties and origin. Gems & Gemology 53(2):1–24Google Scholar
  10. Isaenko SI, Shumilova TG (2011) Thermostimulated splitting of Raman active lonsdaleite modes. Vestnik of the Institute of Geology Komi SC UB RAS 9:29–33 (in Russian)Google Scholar
  11. Kagi H, Takahashi K, Hidaka H, Masuda A (1994) Chemical properties of Central African carbonado and its genetic implications. Geochim Cosmochim Acta 58:2629–2638Google Scholar
  12. Kagi H, Sato S, Akagi T, Kanda H (2007) Generation history of carbonado inferred from photoluminescence spectra, cathodoluminescence imaging, and carbon-isotopic composition. Am Mineral 92:217–224CrossRefGoogle Scholar
  13. Kaminskiy FV, Kliyuyev YA, Prokopchuk BI, Scheka SA, Smirnov VI, Ivanovskaya IN (1978) First carbonado and ballas finds in the Soviet Union. Akademiya Nauk SSSR Doklady 242:152–155 (in Russian)Google Scholar
  14. Kaminsky FV (1984) Diamond-bearing nonkimberlitic magmatic rocks. NEDRA, Leningrad (in Russian)Google Scholar
  15. Kaminsky FV (1987) Origin of polycrystalline carbonado diamond aggregates. Dokl Akad Nauk SSSR Earth Sci Section 294:122–123 (in Russian)Google Scholar
  16. Kaminsky FV (1991) Carbonado and yakutite: properties and possible genesis. In: Meyer HOA, Leonardos OH (eds) Proceedings of the Fifth International Kimberlite Conference, V.2. Diamonds: Characterization, genesis and exploration. Published by Companhia de Pesquisa de Reeursos Minerais, CPRM, Rio de Janeiro, pp 136–143Google Scholar
  17. Kaminsky FV, Kirikilitsa SI, Yeryomenko GK, Polkanov YA, AYa K (1979) New data on Brazilian carbonado. Doklady AN SSSR 249:443–445 (in Russian)Google Scholar
  18. Kaminsky FV, Wirth R, Morales L (2013) Internal texture and syngenetic inclusions in carbonado. Can Mineral 51:39–55Google Scholar
  19. Ketcham RA, Koeberl C (2013) New textural evidence on the origin of carbonado diamond: An example of 3-D petrography using X-ray computed tomography. Geosphere 9(5):1336–1347CrossRefGoogle Scholar
  20. Kis VK, Shumilova T, Masaitis V (2016) HRTEM study of Popigai impact diamond: heterogeneous diamond nanostructures in native amorphous carbon matrix. Phys Chem Miner.  https://doi.org/10.1007/s00269-016-0825-6
  21. Koeberl C, Masaitis VL, Shafranovsky GI, Gilmour I, Langenhorst F, Schrauder M (1997) Diamonds from Popigai impact structure, Russia. Geology 25(11):967–970CrossRefGoogle Scholar
  22. Koeberl C, Sharpton VL, Murali AV, Burke K (1990) Kara and Ust-Kara impact structures (USSR) and their relevance to the K/T boundary event. Geology 18:50–53CrossRefGoogle Scholar
  23. Kurdyumov AV, Britun VF, Yarosh VV, Borimchuk NI, Danilenko AB, Zelyavskiy VB (2009) Phase transformations of soot under high temperature impact pressing. Superhard Materials 5:36–43 (in Russian)Google Scholar
  24. Kurdumov AV, Britun VF, Yarosh VV, Danilenko AI, Zelyavskii VB (2012) The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond. Journal of Superhard Materials 34(1):19–27CrossRefGoogle Scholar
  25. Kvasnytsya V, Wirth R (2013) Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study. Diam Relat Mater 32:7–16CrossRefGoogle Scholar
  26. Langenhorst F, Shafranovsky G, Masaitis VL (1998) A comparative study of impact diamonds from the Popigai, Ries, Sudbury, and Lappajarvi craters. Meteorit Planet Sci 33(4):A90–A91Google Scholar
  27. Langenhorst F (2002) Shock metamorphism of some minerals: Basic introduction and microstructural observations. Bulletin of the Czech Geological Survey 77(4):265–282Google Scholar
  28. Lonsdale K (1971) Formation of lonsdaleite from single-crystal graphite. The American Mineralogist 56:333–336Google Scholar
  29. Masaitis VL, Futergendler SI, Gnevushev MA (1972) Diamonds in impactites of the Popigai meteoritic crater. Zapiski Vsesoyuznogo Mineralogicheskogo Obshestva 101(1):108–112 (in Russian)Google Scholar
  30. Masaitis VL, Maschak MS, Raykhlin AI, Shafranovsky GI, Selivanovskaya TV (1998) Diamondiferous impactites of Popigai astrobleme. VSEGEI, Saint-Petersburg (in Russian)Google Scholar
  31. Masaitis VL, Shafranovsky GI, Grieve RAF, Langenhorst F, Peredery WV, Therriault IG et al (1999) Impact Diamonds in the Suevitic Breccias of the Black Member of the Onaping Formation, Sudbury Structure, Ontario, Canada. Geol Soc Am Spec Pap 339:317–321Google Scholar
  32. Masaitis VL, Shafranovsky GI, Yezersky VN, Reshetnyak NB (1990) Impact diamonds in ureilites and impactites. Meteoritika 49:180–196 (in Russian)Google Scholar
  33. Mashchak MS (1991) Morphology and structure of the Kara and Ust'-Kara astroblemes. Int Geol Rev 33(5):433–447CrossRefGoogle Scholar
  34. McCall GJH (2009) The carbonado diamond conundrum. Earth Sci Rev 93:85–91CrossRefGoogle Scholar
  35. Nazarov MA, Badjukov DD, Alekseev AS (1989) Morphology of the Kara and Ust'Kara impact craters, USSR. Lunar Planet Sci 20:762–763Google Scholar
  36. Nazarov MA, Badjukov DD, Alekseev AS (1992) The Kara structure as a possible K/T impact site. Lunar and Planetary Science 23:969–970Google Scholar
  37. Németh P, Garvie LAJ, Aoki T, Dubrovinskaia N, Dubrovinsky L, Buseck PR (2014) Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat Commun 5(5447).  https://doi.org/10.1038/ncomms6447
  38. Ohfuji H, Irifune T, Litasov KD, Yamashita T, Isobe F, Afanasiev VP et al (2015) Natural occurrence of pure nanopolycrystalline diamond from impact crater. Sci Rep 5:14702CrossRefGoogle Scholar
  39. Osinski GR (2003) Impact glasses in fallout suevites from the Ries impact structure, Germany: An analytical SEM study. Meteorit Planet Sci 38(11):1641–1667CrossRefGoogle Scholar
  40. Osinski GR, Bunch TE, Flemming RL, Buitenhuis E, Wittke JH (2015) Impact melt- and projectile-bearing ejecta at Barringer Crater, Arizona. Earth Planet Sci Lett 432:283–292CrossRefGoogle Scholar
  41. Osinski GR, Grieve RAF, Collins GS, Marion C, Sylvester P (2008) The effect of target lithology on the products of impact melting. Meteorit Planet Sci 43(12):1939–1954CrossRefGoogle Scholar
  42. Osinski GR, Spray JG (2001) Impact-generated carbonate melts: evidence from the Haughton structure, Canada. Earth Planet Sci Lett 194:17–29CrossRefGoogle Scholar
  43. Petrovsky VA, Shiryaev AA, Lyutoev VP, Sukharev AE, Martins M (2010) Morphology and defects of diamond grains in carbonado: clues to carbonado genesis. Eur J Mineral 22:35–47CrossRefGoogle Scholar
  44. Piazolo S, Kaminsky FV, Trimby P, Evans L, Luzin V (2016) Carbonado revisited: Insights from Neutron diffraction, high resolution orientation mapping and numerical simulations. Lithos.  https://doi.org/10.1016/j.lithos.2016.09.011
  45. Reshetnyak NB, Yezerskiy VA (1990) Combination scattering spectroscopy of natural diamonds. Mineral J 12(5):3–9 (in Russian)Google Scholar
  46. Schmitt RT, Larke C, Lingemann CM., Siebenschock M, Stoffer D (2005) Distribution and origin of impact diamonds in the Ries crater, Germany. Geol. Soc. Amer. Spec. Paper, in “Large meteorite impacts III”, Th. Kenkmann, F. Horz, A., ed. Deutsch. p. cm., Special paper 2005; 384: 299–314Google Scholar
  47. Shiryaev AA, Fisenko AV, Vlasov II, Semjonova LF, Nagel P, Schuppler S (2011) Spectroscopic study of impurities and associated defects in nanodiamonds from Efremovka (CV3) and Orgueil (CI) meteorites. Geochim Cosmochim Acta 75:3155–3165CrossRefGoogle Scholar
  48. Shishkin MA, Shkarubo SI, Molchanova EB, Markina NB, Vanshtein BG et al. (2012) State Geological Map. Scale 1:1000000 (3rd editing). South-Karskaya series. R-41 – Amderma. Report. Saint-Petersburg, VSEGEI (in Russian)Google Scholar
  49. Shumilova TG, Isaenko SI, Makeev BA, Zubov AA, Shanina SN, Tropnikov YM, Askhabov AM (2018a) Ultrahigh-Pressure Liquation of an Impact Melt. Dokl Earth Sci 480(1):595–598CrossRefGoogle Scholar
  50. Shumilova TG, Isaenko SI, Ulyashev VV, Kazakov VV, Makeev BA (2018b) After-coal diamonds: an enigmatic type of impact diamonds. Eur J Mineral 30(1).  https://doi.org/10.1127/ejm/2018/0030-2715
  51. Shumilova T, Kis V, Masaitis V, Isaenko S, Makeev B (2014) Onion-like carbon in impact diamonds from Popigai astrobleme. Eur J Mineral 26:267–277CrossRefGoogle Scholar
  52. Shumilova TG, Lutoev VP, Isaenko SI, Kovalchuk NS, Makeev BA, Lysiuk AY, Zubov AA (2018c) Spectroscopic features of ultrahigh-pressure impact glasses of the Kara astrobleme. Sci Rep 8:6923CrossRefGoogle Scholar
  53. Smith JV, Dawson JB (1985) Carbonado: Diamond aggregates from early impacts of crystal rocks? Geology 13(5):342–343CrossRefGoogle Scholar
  54. Tian H, Schryvers D, Claeys P (2011) Nanodiamonds do not provide unique evidence for a Younger Dryas impact. PNAS 108(1):40–44CrossRefGoogle Scholar
  55. Trieloff M, Deutsch A, Jessberger EK (1998) The age of the Kara impact structure, Russia. Meteorit Planet Sci 33:361–372CrossRefGoogle Scholar
  56. Vishnevsky SA (2007) Astroblemes. Nonparel, Novosibirsk (in Russian)Google Scholar
  57. Vishnevsky SA (2016) Popigai astrobleme. Acad Press GEO, Novosibirsk (in Russian)Google Scholar
  58. Xie H, Yin F, Yu T, Wang JT, Liang C (2014) Mechanism for direct graphite-to-diamond phase transition. Sci Rep 4(5930).  https://doi.org/10.1038/srep05930
  59. Yelisseyev A, Vins V, Afanasiev V, Rybak A (2017) Effect of electron irradiation on optical absorption of impact diamonds from the Popigai meteorite crater. Diam Relat Mater 79:7–13CrossRefGoogle Scholar
  60. Yelisseyev A, Meng GS, Afanasyev V, Pokhilenko N, Pustovarov V, Isakova A et al (2013) Optical properties of impact diamonds from the Popigai astrobleme. Diam Relat Mater 37(1):8–16CrossRefGoogle Scholar
  61. Yezerskiy VA (1986) High pressure polymorphs produced by the shock transformation of coals. Int Geol Rev 28(2):221–228CrossRefGoogle Scholar
  62. Yushkin NP, Ayu L (2001) Scenarios and basic parameters of Kara impact event. Vestnik IG Komi SC UB RAS 8:14–17 (in Russian)Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Geology, Komi Scientific Centre of Ural DivisionRussian Academy of SciencesSyktyvkarRussia
  2. 2.Hawaii Institute of Geophysics and PlanetologyUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations