Advertisement

Mineralogy and Petrology

, Volume 113, Issue 5, pp 667–686 | Cite as

Contrasting oxygen fugacity of I- and S-type granites from the Araçuaí orogen, SE Brazil: an approach based on opaque mineral assemblages

  • Jordania Cristina dos Santos Dias
  • Leonardo GonçalvesEmail author
  • Cristiane C. Gonçalves
Original Paper
  • 96 Downloads

Abstract

This study presents mineralogical characterization of opaque assemblages from I- and S-type granites from the Araçuaí orogen, southeastern Brazil that belong respectively, to the pre- and syn-collisional stages of the orogeny. Although these granites are geochemically well-characterized, with a robust geochemical, isotopic and geochronological database, their opaque minerals have not yet been investigated, and they provide important information about the oxygen fugacity and temperature conditions of their magmas. I-type granites (G1 Supersuite) consist of biotite hornblende granites and their opaque assemblage is ilmenite + pyrite + pyrrhotite ± magnetite ± Fe-Ti oxides ± chalcopyrite. S-type rocks (G2 Supersuite) are biotite muscovite sillimanite granites with ilmenite + graphite + pyrrhotite + pyrite as opaques. Our results combined with literature data show that ranges for oxygen fugacity (fO2) are: I-type granitoids containing magnetite and free of pyrite and phyrrhotite likely crystallized under fO2 between 10−15 bars and 10–8.5 bars, whereas magnetite free rocks containing pyrite and pyrrhotite should have crystallized with fO2 higher than 10−18 bars and lower than 10−15 bars. Regarding S-type granites, they must have crystallized under fO2 lower than 10−18 bars.

Keywords

Opaque minerals Oxygen fugacity I-type granites S-type granites G1 and G2 supersuites Araçuaí orogen 

Notes

Acknowledgements

We are grateful to Prof. Maarten A.T.M. Broekmans for the careful editorial handling, and anonymous reviewers, whose criticism led to significant improvement of the manuscript. We acknowledge the Microanalysis Laboratory of the Universidade Federal de Ouro Preto (UFOP), a member of the Microscopy and Microanalysis Network of Minas Gerais State/Brazil/FAPEMIG, for the mineral chemistry analyses. We also would like to thank Prof. Fernando Alkmim (UFOP) and Prof. Antônio Pedrosa-Soares (UFMG) for the motivation and constructive discussions about the genesis of granites from the Araçuaí orogen, and Prof. Hermínio Nalini Jr. (UFOP) for providing his thin sections that gave additional information to this study. We thank Marco Paulo Castro, Débora Vasconcellos and Profa. Gláucia Queiroga (Microanalysis Laboratory of the Universidade Federal de Ouro Preto, DEGEO-EM-UFOP) for analytical facilities and assistance, Prof. Edison Tazava (UFOP) for helping in the identification of opaque phases under reflected light and Geraldo Sampaio for his contribution with chemical calculations. The comments and criticism of Dr. Luiz Grafulha Morales have contributed to the improvement of the original version of the manuscript and is gratefully appreciated. This research was partially supported by a UFOP researcher fellowship, process 23109.003268/2017-47.

References

  1. Alkmim FF, Marshak S, Fonseca MA (2001) Assembling West Gondwana in the Neoproterozoic: clues from the São Francisco craton region, Brazil. Geology 29:319–322CrossRefGoogle Scholar
  2. Alkmim FF, Marshak S, Pedrosa-Soares AC, Peres GG, Cruz S, Whittington A (2006) Kinematic evolution of the Araçuaí-West Congo orogen in Brazil and Africa: nutcracker tectonics during the Neoproterozoic assembly of Gondwana. Precambrian Res 149:43–64CrossRefGoogle Scholar
  3. Arnold RG (1962) Equilibrium relations between pyrrhotite and pyrite from 325°C to 743°C. Econ Geol 57:72–90CrossRefGoogle Scholar
  4. Barbarin B (1990) Granitoids: main petrogenetic classifications in relation to origin and tectonic setting. Geol J 25:227–238CrossRefGoogle Scholar
  5. Broska I, Petrík I (2011) Accessory Fe-Ti oxides in the west-Carpathian I-type granitoids: witnesses of the granite mixing and late oxidation processes. Miner Petrol 102:87–97CrossRefGoogle Scholar
  6. Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357CrossRefGoogle Scholar
  7. Butler R F (1992) Paleomagnetism: Magnetic Domains to Geologic Terranes, Chapter 2. Ferromagnetic Minerals, Blackwell Scientific Publications, pp16–30Google Scholar
  8. Carroll MR, Wyllie PJ (1989) Granite melt convecting in an experimental micro-magma chamber at 1050°C, 15kbar. Euro J Min 1:249–260CrossRefGoogle Scholar
  9. Chappell BW, White AJR (1974) Two contrasting granite types. Pacific Geol 8:173–174Google Scholar
  10. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26Google Scholar
  11. Chappell BW, White AJR (2001) Two contrasting granite types: 25 years later. Aust J Earth Sci 48(4):489–499CrossRefGoogle Scholar
  12. Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134-135:317–329CrossRefGoogle Scholar
  13. Czamanske GK, Mihálik P (1972) Oxidation during magmatic differentiation, Finnmarka complex, Oslo, area, Norway: part 1, the opaque oxides. J Petrol 13:493–509CrossRefGoogle Scholar
  14. Degler R, Pedrosa-Soares A, Novo T, Tedeschi M, Silva LC, Dussin I, Lana C (2018) Rhyacian-Orosirian isotopic records from the basement of the Araçuaí-Ribeira orogenic system (SE Brazil): links in the Congo-São Francisco palaeocontinent. Precambrian Res 317:179–195CrossRefGoogle Scholar
  15. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Min Mag 51:431–435CrossRefGoogle Scholar
  16. Duke EF, Rumble D III (1986) Textural and isotopic variations in graphite from plutonic rocks, south-Central New Hampshire. Contrib Mineral Petrol 93:409–419CrossRefGoogle Scholar
  17. Figueiredo MCH, Campos Neto MC (1993) Geochemistry of the Rio Doce magmatic arc, southeastern Brazil. An Acad Bras Cienc 65:63–81Google Scholar
  18. Frezzotti ML, Di Vincenzo G, Ghezzo C, Burke EAJ (1994) Evidence of magmatic CO2-rich fluids in peraluminous graphite-bearing leucogranites from deep freeze range (northern Victoria land, Antarctica). Contrib Mineral Petrol 117:111–123CrossRefGoogle Scholar
  19. Frost BR, Arculus RJ, Barnes CG, Collins WJ, Ellis DJ, Frost CD (2001) A geochemical classification of granitic rocks. J Petrol 42:2033–2048CrossRefGoogle Scholar
  20. Gastil G, Diamond J, Knaack C, Walawender M, Marshall M, Boyles C, Chadwick B (1990) The problem of magnetite/ilmenite boundary in southern and Baja California, California. In: Anderson J L. ed. The nature and origin of Cordilleran magmatism: Boulder, Colorado. Geol Soc Am Mem 174. Geol Soc Am 19–32Google Scholar
  21. Gonçalves L E S (2015) Contribuição à geoquímica, geocronologia, estrutura e evolução dos segmentos central e setentrional do Arco Magmático Rio Doce, Orógeno Araçuaí, MG. PhD thesis, Universidade Federal de Ouro Preto, 180 ppGoogle Scholar
  22. Gonçalves LES, Alkmim FF, Pedrosa-Soares AC (2010) Características geoquímicas da Suíte G1, arco magmático do Orógeno Araçuaí, entre Governador Valadares e Ipanema, MG. Revista da Escola de Minas 63:457–464CrossRefGoogle Scholar
  23. Gonçalves L, Alkmim FF, Pedrosa-Soares AC, Dussin IA, Valeriano CM, Lana C, Tedeschi M (2016) Granites of the intracontinental termination of a magmatic arc: an example from the Ediacaran Araçuaí orogen, southeastern Brazil. Gondwana Res 36:439–458CrossRefGoogle Scholar
  24. Gonçalves L, Alkmim FF, Pedrosa-Soares A, Gonçalves CC, Vieira V (2018) From the plutonic root to the volcanic roof of a continental magmatic arc: a review of the Neoproterozoic Araçuaí orogen, southeastern Brazil. Int J Earth Sci (Geol Rundsch) 107:337–358CrossRefGoogle Scholar
  25. Gonçalves L, Farina F, Lana C, Pedrosa-Soares AC, Alkmim F, Nalini HA Jr (2014) New U-Pb ages and lithochemical attributes of the Ediacaran Rio Doce magmatic arc, Araçuaí confined orogen, southeastern Brazil. J S Am Earth Sci 52:129–148CrossRefGoogle Scholar
  26. Gradim C, Roncato J, Pedrosa-Soares AC, Cordani U, Dussin I, Alkmim FF, Queiroga G, Jacobsohn T, Da Silva LC, Babinski M (2014) The hot back-arc zone of the Araçuaí orogen, eastern Brazil: from sedimentation to granite generation. Bra J Geol 44:155–180CrossRefGoogle Scholar
  27. Heilbron M, Duarte B, Valeriano C, Simonetti A, Machado N, Nogueira J (2010) Evolution of reworked Paleoproterozoic basement rocks within the Ribeira belt (Neoproterozoic), SE-Brazil, based on U-Pb geochronology: implications for paleogeographic reconstructions of the São Francisco-Congo paleocontinent. Precambrian Res 178:136–148CrossRefGoogle Scholar
  28. Helmy HM, Ahmed AF, El Mahallawi MM, Ali SM (2004) Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications. J Afr Earth Sci 38:255–268CrossRefGoogle Scholar
  29. Hine R, Williams IS, Chappell BW, White AJR (1978) Contrasts between I- and S-type granitoids of the Kosciusko batholith. J Geol Soc Aust 25:219–234CrossRefGoogle Scholar
  30. Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol 27:293–305Google Scholar
  31. Ishihara S (2004) The redox state of granitoids relative to tectonic setting and earth history: the magnetite-ilmenite series 30 years later. Trans R Soc Edinb Earth Sci 95:23–33CrossRefGoogle Scholar
  32. Khanchuk AI, Plyusnina LP, Molchanov VP, Medvedev EI (2010) Carbonization and geochemical characteristics of graphite-bearing rocks in the northern Khanka terrane, Primorie, Russian far east. Geokhimiya 48:115–125Google Scholar
  33. Melo MG, Lana C, Pedrosa-Soares AC, Frei D, Alkmim FF, Alkmin LA (2017) Two cryptic anatetic events within a syn-collisional granitoid from the Araçuaí Orogen (southeastern Brazil): evidence from the polymetamorphic Carlos Chagas batholith. Lithos 277:51–71CrossRefGoogle Scholar
  34. Murata M, Itaya T, Ueda Y (1983) Suphide and oxide minerals from the Ohmine granitic rocks in Kii peninsula, Central Japan, and their primary paragenetic relations. Contrib Mineral Petrol 84:58–65CrossRefGoogle Scholar
  35. Nalini Jr H A (1997) Caractérisation des suites magmatiques néprotérozoïques de la région de Conselheiro Pena et Galiléia (Minas Gerais, Brésil). PhD thesis, Ecole Nationale Superieure des Mines de Saint Etienne, Ecole Nationale Superieure des Mines de Paris, Saint Etiene, 237 ppGoogle Scholar
  36. Nalini HA Jr, Bilal E, Neves JMC (2000) Syn-collisional peraluminous magmatism in the Rio Doce region: mineralogy, geochemistry and isotopic data of the neoproterozoic Urucum suite (eastern Minas Gerais state, Brazil). Bra J Geol 30:120–125Google Scholar
  37. Nalini HA Jr, Machado R, Bilal E (2005) Geoquímica e Petrogênese da Suíte Galiléia: Exemplo de Magmatismo Tipo-I Metaluminoso Pré-Colisional Neoproterozóico da Região do Médio Vale do Rio Doce (MG). Braz J Geol 35:23–34Google Scholar
  38. Narduzzi F, Farina F, Stevens G, Lana C, Nalini HA Jr (2017) Magmatic garnet in the cordilleran-type Galiléia granitoids of the Araçuaí belt (Brazil): evidence for crystallization in the lower crust. Lithos 282-283:82–97CrossRefGoogle Scholar
  39. Noce CM, Pedrosa-Soares AC, Silva LC, Armstrong R, Piuzana D (2007) Evolution of polycyclic basement complexes in the Araçuaí Orogen, based on U–Pb SHRIMP data: implications for Brazil–Africa links in Paleoproterozoic time. Precambrian Res 159:60–78CrossRefGoogle Scholar
  40. Pedrosa-Soares A C, Alkmim F F, Tack L, Noce C M, Babinski M, Silva L C, Martins-Neto M A (2008) Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West-Congo orogen. In: Pankhurst J R, Trouw R A J, Brito Neves B B, De Wit M J. eds. West Gondwana: Pre-Cenozoic Correlations across the South Atlantic Region. Geol Soc Lond Special Publications 294: 153–172Google Scholar
  41. Pedrosa-Soares AC, Campos CP, Noce C, Silva LC, Novo T, Roncato J, Medeiros S, Castañeda C, Queiroga G, Dantas E, Dussin I, Alkmim FF (2011) Late Proterozoic-Cambrian granitic magmatism in the Araçuaí orogen (Brazil), the eastern Brazilian Pegmatite Province and related mineral resources. In: Sial A N, Bettencourt J S, De Campos C P, Ferreira V P. eds. Granite-related ore deposits. Geol Soc Lond Special Publ 350:25–51CrossRefGoogle Scholar
  42. Pedrosa-Soares AC, Noce CM, Vidal P, Monteiro RLBP, Leonardos OH (1992) Toward a new tectonic model for the late Proterozoic Araçuaí (SE Brazil) – west Congolian (SW Africa) belt. J S Am Earth Sci 6:33–47CrossRefGoogle Scholar
  43. Pedrosa-Soares AC, Noce CM, Wiedemann CM, Pinto C (2001) The Araçuaí-West Congo orogen in Brazil: an overview of a confined orogen formed during Gondwanland assembly. Precambrian Res 110:307–323CrossRefGoogle Scholar
  44. Pitcher WS (1983) Granite type and tectonic environment. In: Hsü KJ (ed) Mountain building processes. Academic Press, London, New York, pp 19–40Google Scholar
  45. Pitcher WS (1993) The nature and origin of granite. Blackie Academic and Professional, LondonCrossRefGoogle Scholar
  46. Rudnick R (1995) Making continental crust. Nature 378:571–578CrossRefGoogle Scholar
  47. Sato M, Valenza M (1980) Oxygen fugacities of the layered series of the Skaergaard intrusion. East Greenland Am J Sci 280A:134–158Google Scholar
  48. Seifert W, Thomas R, Rhede D, Förster H (2010) Origin of coexisting wüstite, mg-Fe and REE phosphate minerals in graphite-bearing fluorapatite from the Rumburk granite. Eur J Min 22:495–507CrossRefGoogle Scholar
  49. Soman K, Lobzova RV, Sivadas KM (1986) Geology, genetic types, and origin of graphite in South Kerala, India. Econ Geol 81:997–1002CrossRefGoogle Scholar
  50. Tedeschi M, Novo T, Pedrosa-Soares AC, Dussin I, Tassinari C, Silva LC, Gonçalves L, Alkmim F, Lana C, Figueiredo C, Dantas E, Medeiros S, De Campos C, Corrales F, Heilbron M (2016) The Ediacaran Rio Doce magmatic arc revisited (Araçuaí-Ribeira orogenic system, SE Brazil). J S Am Earth Sci 68:167–186CrossRefGoogle Scholar
  51. Toulmin P III, Barton PB Jr (1964) A thermodynamic study of pyrite and pyrrhotite. Geochim Cosmochim Acta 28:641–671CrossRefGoogle Scholar
  52. Vieira V S (2007) Significado do Grupo Rio Doce no Contexto do Orógeno Araçuaí. PhD thesis, Universidade Federal de Minas Gerais, 117 ppGoogle Scholar
  53. Whalen JB, Chappell BW (1988) Opaque mineralogy and mafic mineral chemistry of I- and S-type granites of the Lachlan Fold Belt. South Aust Am Min 73:281–296Google Scholar
  54. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  55. Wones DR (1981) Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geol 31:191–212Google Scholar
  56. Wones DR (1989) Significance of the assemblage titanite + magnetite + quartz in granitic rocks. Am Mineral 74:744–749Google Scholar
  57. Yang X, Lentz DR (2010) Sulfur isotopic systematics of granitoids from southwestern New Brunswick, Canada: implications for magmatic-hydrothermal processes, redox conditions and gold mineralizarion. Mineral Deposita 45:795–816CrossRefGoogle Scholar
  58. Zeng Y, Zhu Y, Liu J (2001) Carbonaceous material in S-type Xihuashan granite. Geochem J 35:145–153CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Geologia, Escola de MinasUniversidade Federal de Ouro PretoOuro PretoBrazil

Personalised recommendations