Advertisement

Mineralogy and Petrology

, Volume 113, Issue 5, pp 651–666 | Cite as

Morphology, trace elements, and geochronology of zircons from monzogranite in the Northeast Xing’an Block, northeastern China: constraints on the genesis of the host magma

  • Changzhou Deng
  • Guangyi Sun
  • Deyou SunEmail author
  • Jinsheng Han
  • Dongguang Yang
  • Zongyuan Tang
Original Paper
  • 80 Downloads

Abstract

The morphology, trace-element composition and geochronology of 43 zircon grains from two monzogranite samples from the Northeast Xing’an Block, northeastern China, were determined using cathodoluminescence imaging and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Three morphological subtypes (S3, S8 and S9) are recognized in the zircon grain samples, and subtype S8 is dominant, reflecting a calc-alkaline, moderately aluminous, high-pressure crystallization medium and a crystallization temperature of 700 ± 50 °C. The zircon grains are characterized by oscillatory zoning, relatively high Th/U ratios (0.3–1.0), steep chondrite-normalized rare-earth element patterns, high Hf contents (>9000 ppm), positive Ce (Ce/Ce* = 4.84 to 2914) and negative Eu (Eu/Eu* = 0.24 to 0.90) anomalies, indicating a magmatic source. The 206Pb/238U ages of the two monzogranite samples are 180 ± 1 and 181 ± 1 Ma, respectively, implying an Early Jurassic emplacement age for the intrusion. The disparate geochemical behaviors of Hf, Th, and Nb within the zircons, as well as the U/Yb, Nb/Yb, Th/U, Nb/Hf, Th/Nb, and Hf/Th ratios, suggest a continental-crust source in a compressional-magmatic-arc or orogenic-tectonic setting, and a calc-alkaline parent magma. All of the grains show relatively high Ce4+/Ce3+ ratios, suggesting that they were derived from an oxidized magma, which favors enrichment of Cu-Mo elements in the granite porphyry.

Keywords

Zircon Morphology U–Pb age Geochemistry Monzogranite 

Notes

Acknowledgements

This work was supported by the Heilongjiang Research Project of Land and Resources (201701) and Self-determined Foundation of Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources (DBY-ZZ-18-10). We are very grateful to Dr. Hu Huang for a helpful scientific review on the original manuscript. We would like to thank Dr. Maarten A.T.M. BROEKMANS and JEO Assistant Lhiric Agoyaoy and two reviewers for the constructive suggestions of the manuscript.

Supplementary material

710_2019_669_MOESM1_ESM.xls (18 kb)
Supplementary Table 1 Trace-element data for zircons from DGS01 from the monzogranite in the NE Xing’an Block. (XLS 18 kb)
710_2019_669_MOESM2_ESM.xls (18 kb)
Supplementary Table 2 Trace-element data for zircons from DGS25 from the monzogranite in the NE Xing’an Block. (XLS 18 kb)

References

  1. Amelin Y, Lee DC, Halliday AN, Pidgeon RT (1999) Nature of the earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399:252–255CrossRefGoogle Scholar
  2. Bai LA, Sun JG, Gu AL, Zhao KQ, Sun QL (2014) A review of the genesis, geochronology, and geological significance of hydrothermal copper and associated metals deposits in the Great Xing’an Range, NE China. Ore Geol Rev 61:192–203CrossRefGoogle Scholar
  3. Ballard JR, Palin JM, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364CrossRefGoogle Scholar
  4. Barbey P, Alle P, Brouand M, Albarede F (1995) Rare-earth patterns in zircons from the Manaslu granite and Tibetan Slab migmatites (Himalaya): insights in the origin and evolution of a crustally-derived granite magma. Chem Geol 125:1–17CrossRefGoogle Scholar
  5. Bea F, Montero P (1999) Behaviour of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite Formation of Ivrea-Verbano, NW Italy. Geochim Cosmochim Acta 63:1133–1153CrossRefGoogle Scholar
  6. Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454CrossRefGoogle Scholar
  7. Burnham AD, Berry AJ (2012) An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity. Geochim Cosmochim Acta 95:196–212CrossRefGoogle Scholar
  8. Chen ZG, Zhang LC, Wan B, Wu HY, Cleven N (2011) Geochronology and geochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE China, and their geological significance. Ore Geol Rev 43(1):92–105CrossRefGoogle Scholar
  9. Claiborne LL, Miller CF, Wooden JL (2010) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol 160:511–531CrossRefGoogle Scholar
  10. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar, J.M. and Hoskin, P.W.O. (eds) zircon. Rev Mineral Geochem 53:469–499CrossRefGoogle Scholar
  11. Deng CZ, Sun GY, Sun DY, Huang H, Zhang JF, Gou J (2018) Origin of C type adakite magmas in the NE Xing’an Block, NE China and tectonic implication. Acta Geochim 37:281–294CrossRefGoogle Scholar
  12. Deng CZ, Sun DY, Han JS, Chen HY, Li GH, Xiao B, Li RC, Feng YZ, Li CL, Lu S (2019b) Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu-Mo mineralization: constraints from igneous rocks associated with the Fukeshan deposit, NE China. Lithos 326-327:341–357CrossRefGoogle Scholar
  13. Deng CZ, Sun DY, Li GH, Lu S, Tang ZY, Gou J, Yang YJ (2019a) Early Cretaceous volcanic rocks in the Great Xing’an Range: late effect of a flat-slab subduction. J Geodyn 124:38–51CrossRefGoogle Scholar
  14. Fu B, Mernagh TP, Kita NT, Kemp AIS, Valley JW (2009) Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au–Ag–(Cu) deposit, SE Australia. Chem Geol 259:131–142CrossRefGoogle Scholar
  15. Gao J, Klemd R, Qian Q, Zhang X, Li JL, Jiang T, Yang YQ (2011) The collision between the Yili and Tarim blocks of the southwestern Altaids: geochemical and age constraints of a leucogranite dike crosscutting the HP–LT metamorphic belt in the Chinese Tianshan Orogen. Tectonophysics 499:118–131CrossRefGoogle Scholar
  16. Ge WC, Wu FY, Zhou CY, Zhang JH (2007) Porphyry Cu-Mo deposits in the eastern Xing’an-Mongolian Orogenic Belt: mineralization ages and their geodynamic implications. Chin Sci Bull 52:3416–3427 (in Chinese)CrossRefGoogle Scholar
  17. Ge WC, Wu FY, Zhou CY, Zhang JH (2005) Zircon U-Pb ages and its significance of the Mesozoic granites in the Wlanhaote region, central Da Hinggan Mountain. Acta Petrol Sin 21:749–762 (In Chinese with English abstract)Google Scholar
  18. Grimes CB, John BE, Kelemen PB, Mazdab F, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) The trace element chemis-try of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–646CrossRefGoogle Scholar
  19. Grimes CB, Wooden JL, Cheadle MJ, John BE (2015) “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon. Contrib Mineral Petrol 170:1–26CrossRefGoogle Scholar
  20. Han YG, Zhang SH, Pirajno F, Zhou XW, Zhao GC, Qü WJ, Liu SH, Zhang JM, Liang HB, Yang K (2013) U-Pb and Re-Os isoto-pic systematics and zircon Ce4+/Ce3+ ratios in the Shiyaogou Mo deposit in eastern Qinling, Central China: insights into the oxidation state of granitoids and Mo (Au) mineralization. Ore Geol Rev 55:29–47CrossRefGoogle Scholar
  21. Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology 35:635–638CrossRefGoogle Scholar
  22. Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226:144–162CrossRefGoogle Scholar
  23. HBGMR (Hei Longjiang Bureau of Geology and Mineral Resources) (1993) Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing (In Chinese with English abstract)Google Scholar
  24. Heaman LM, Parrish RR (1991) U-Pb geochronology of accessory minerals. In: Applications of Radiogenic Isotope Systems to Problems in Geology. Mineralogical Association of Canada Short Course Handbook 19:59–102Google Scholar
  25. Hofmann AE, Baker MB, Eiler JM (2014) Sub-micron-scale trace-element distributions in natural zircons of known provenance: implications for Ti-in-zircon thermometry. Contrib Mineral Petrol 168:1057CrossRefGoogle Scholar
  26. Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid mamas: an integrated approach. J Petrol 41:1365–1396CrossRefGoogle Scholar
  27. Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648CrossRefGoogle Scholar
  28. Hu XL, Ding ZJ, He MC, Yao SZ, Zhu BP, Shen J, Chen B (2014) A porphyry-skarn metallogenic system in the Lesser Xing’an range, NE China: implications from U-Pb and Re-Os geochronology and Sr-Nd-Hf isotopes of the Luming Mo and Xulaojiugou Pb-Zn deposits. J Asian Earth Sci 90:88–100CrossRefGoogle Scholar
  29. Humphries DW (1992) The preparation of thin sections of rocks, minerals and ceramics. Microscopy Handbooks (24), Royal Microscopical Society, Oxford Science Publications, OxfordGoogle Scholar
  30. Jahn BM (2004) The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. Geol Soc Lond, Spec Publ 226:73–100CrossRefGoogle Scholar
  31. Kelemen PB, Hanghoj K, Greene AR (2003) One view of the geo-chemistry of subduction-related magmatic arcs, with an empha-sis on primitive andesite and lower crust. In: Rudnick RL (ed)the crust: Holland HD, Turekian KK (eds) treatise on geo-chemistry, vol v. 3. Elsevier - Pergamon, Oxford, pp 593–659Google Scholar
  32. Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315:980–983CrossRefGoogle Scholar
  33. Li JY (2006) Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific plate. J Asian Earth Sci 26:207–224CrossRefGoogle Scholar
  34. Li N, Chen YJ, Ulrich T, Lai Y (2012) Fluid inclusion study of the Wunugetu Cu-Mo deposit, Inner Mongolia, China. Miner Deposita 47:467–482CrossRefGoogle Scholar
  35. Li Y, Ding LL, Xu WL, Wang F, Tang J, Zhao S, Wang ZJ (2015) Geochronology and geochemistry of muscovite granite in Sunwu area, NE China: implications for the timing of closure of the Mongol-Okhotsk Ocean. Acta Petrol Sin 31(1):56–66 (in Chinese with English abstract)Google Scholar
  36. Ludwig KR (2003) User's manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, California, Berkeley 39 ppGoogle Scholar
  37. Pearce JA, Peat DW (1995) Tectonic implications of the composition of volcanic arc magmas. Ann Rev Earth Pl Sc 23:251–285CrossRefGoogle Scholar
  38. Pelleter E, Cheilletz A, Gasquet D, Mouttaqi A, Annich M, El Hakourd A, Deloule E, Féraude G (2007) Hydrothermal zircons: a tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit-Morocco). Chem Geol 245:135–161CrossRefGoogle Scholar
  39. Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220CrossRefGoogle Scholar
  40. Qian Q, Hermann J (2013) Partial melting of lower crust at 10-15 kbar: constraints on adakite and TTG formation. Contrib Mineral Petrol 165:1195–1224CrossRefGoogle Scholar
  41. Qiu JT, Yu XQ, Santosh M, Zhang DH, Chen SQ, Li PJ (2013) Geochronology and magmatic oxygen fugacity of the Tongcun molybdenum deposit, northwest Zhejiang, SE China. Miner Deposita 48:545–556CrossRefGoogle Scholar
  42. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138CrossRefGoogle Scholar
  43. Scherer EE, Whitehouse MJ, Munker C (2007) Zircon as a monitor of crustal growth. Elements 3:19–24CrossRefGoogle Scholar
  44. Sengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:299–307CrossRefGoogle Scholar
  45. She HQ, Li JW, Xiang AP, Guan JD, Yang YC, Zhang DQ, Tan G, Zhang B (2012) U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and its implications to geotectonic evolution. Acta Petrol Sin 28:571–594 (in Chinese with English abstract)Google Scholar
  46. Shen P, Hattori K, Pan HD, Jackson S, Seitmuratova E (2015) Oxidation condition and metal fertility of granitic magmas: zircon trace-element data from porphyry Cu deposits in the central Asian Orogenic Belt. Econ Geol 110:1861–1878CrossRefGoogle Scholar
  47. Sui ZM, Ge WC, Wu FY, Zhang JH, Xu XC, Cheng RY (2007) Zircon U-Pb ages, geochemistry and its petrogenesis of Jurassic granites in northeastern part of the Da Hinggan Mts. Acta Petrol Sin 23:461–480 (in Chinese with English abstract)Google Scholar
  48. Sun DY, Suzuki K, Wu FY, Lu XP (2005) CHIME dating and its application for Mesozoic granites of Huanggoushan, Jilin Province. Geochimica 34:306–314Google Scholar
  49. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: mplications for mantle composition and processes. Geol Soc Lond, Spec Publ 42:313–345CrossRefGoogle Scholar
  50. Tani K, Dunkley D, Kimura JI, Wysocanski RJ, Yamada K, Tatsumi Y (2010) Syncollisional rapid granitic magma formation in an arc-arc collision zone: evidence from the Tanzawa plutonic complex, Japan. Geology 38:215–218CrossRefGoogle Scholar
  51. Trail DJ, Watson EB, Tailby ND (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim Cosmochim Acta 97:70–87CrossRefGoogle Scholar
  52. Watson EB, Cherniak DJ, Hanchar JM, Harrison TM, Wark DA (1997) The incorporation of Pb into zircon. Chem Geol 141:19–31CrossRefGoogle Scholar
  53. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433CrossRefGoogle Scholar
  54. Wang X (1998) Quantitative description of zircon morphology and its dynamics analysis. Sci China Earth Sci 41:422–428CrossRefGoogle Scholar
  55. Wang X, Kienast JR (1999) Morphology and geochemistry of zircon: a case study on zircon from the microgranitoid enclaves. Sci China Earth Sci 42:544–552CrossRefGoogle Scholar
  56. Wang YH, Zhao CB, Zhang FF, Liu JJ, Wang JP, Peng RM, Liu B (2015) SIMS zircon U-Pb and molybdenite Re–Os geochronology, Hf isotope, and whole-rock geochemistry of the Wunugetushan porphyry Cu–Mo deposit and granitoids in NE China and their geological significance. Gondwana Res 28:1228–1245CrossRefGoogle Scholar
  57. Whitehouse MJ, Kamber BS (2002) On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation. Earth Planet Sci Lett 204:333–346CrossRefGoogle Scholar
  58. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187CrossRefGoogle Scholar
  59. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Geoanal Res 19:1–23CrossRefGoogle Scholar
  60. Williams IS, Claesson S (1987) Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides: II. Ion microprobe zircon U – Th – Pb. Contrib Mineral Petrol 97:205–217CrossRefGoogle Scholar
  61. Wu FY, Sun DY, Li HM, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173CrossRefGoogle Scholar
  62. Wu G, Sun FY, Zhao CS, Li ZT, Zhao AL, Pang QB, Li GY (2005) Discovery of the Early Paleozoic post-collosional granites in northern margin of the Ergun massif and its geological significance. Chin Sci Bull 50:2733–2743 (in Chinese)CrossRefGoogle Scholar
  63. Wu FY, Sun DY, Ge WC, Zhang YB, Grant ML, Wilde SA, Jahn BM (2011) Geochronology of the Phanerozoic granitoids in northeastern China. J Asian Earth Sci 41:1–30CrossRefGoogle Scholar
  64. Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY (2003) Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos 66:241–273CrossRefGoogle Scholar
  65. Wu G, Chen YC, Chen YJ, Zeng QT (2012) Zircon U–Pb ages of the metamorphic supracrustal rocks of the Xinhudukou Group and granitic complexes in the Argun massif of the northern Greater Xing’an Mountains, NE China, and their tectonic implications. J Asian Earth Sci 49:214–233CrossRefGoogle Scholar
  66. Xiao WJ, Windley BF, Hao J, Zhai MG (2003) Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt. Tectonics 22:8–1-20CrossRefGoogle Scholar
  67. Xu WL, Pei FP, Wang F, Meng E, Ji WQ, Yang DB, Wei W (2013) Spatial-temporal relationships of Mesozoic volcanic rocks in NE China: constraints on tectonic overprinting and transformations between multiple tectonic regimes. J Asian Earth Sci 74:167–193CrossRefGoogle Scholar
  68. Yang JH, Cawood PA, Du YS, Huang H, Huang HW, Tao P (2012) Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China. Sediment Geol 261-262:120–131CrossRefGoogle Scholar
  69. Zeng QD, Liu JM, Chu SX, Wang YB, Sun Y, Duan XX, Zhou LL (2012) Mesozoic molybdenum deposits in the East Xingmeng orogenic belt, northeast China: characteristics and tectonic setting. Int Geol Rev 54:1843–1869CrossRefGoogle Scholar
  70. Zhang FF, Wang YH, Liu JJ, Wang JP, Zhao CB, Song ZW (2016) Origin of the Wunugetushan porphyry Cu-Mo deposit, Inner Mongolia, NE China: constraints from geology, geochronology, geochemistry, and isotopic compositions. J Asian Earth Sci 117:208–224CrossRefGoogle Scholar
  71. Zhou JB, Wilde SA, Zhang XZ, Ren SM, Zheng CQ (2011) A>1300 km late Pan-African metamorphic belt in NE China: new evidence from the Xing’an Block and its tectonic implications. Tectonophysics 509:280–292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Earth SciencesJilin UniversityChangchunChina
  2. 2.State Key Laboratory of Environmental Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  3. 3.Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Land and ResourcesChangchunChina
  4. 4.Guangzhou Institute of GeochemistryChinese Academy of ScienceGuangzhouChina

Personalised recommendations