Mineralogy and Petrology

, Volume 113, Issue 4, pp 533–553 | Cite as

The new mineral fluorbarytolamprophyllite, (Ba,Sr,K)2[(Na,Fe2+)3TiF2][Ti2(Si2O7)2O2] and chemical evolution of lamprophyllite-group minerals in agpaitic syenites of the Kola Peninsula

  • Maria I. Filina
  • Sergey M. AksenovEmail author
  • Natalia V. Sorokhtina
  • Nikita V. Chukanov
  • Natalia N. Kononkova
  • Dmitriy I. Belakovskiy
  • Sergey N. Britvin
  • Lia N. Kogarko
  • Alexandr D. Chervonnyi
  • Ramiza K. Rastsvetaeva
Original Paper


Unusual agpaitic syenites containing up to 25 vol.% lamprophyllite-group minerals (lamprophyllite, fluorlamprophyllite, barytolamprophyllite, and the new mineral species fluorbarytolamprophyllite, IMA 2016–089) have been discovered in the Niva intrusion and Mokhnatye Roga alkaline dyke belonging to the Kola Alkaline Province, northwestern Russia. The other main components of the rocks are potassium feldspar, Ti-rich aegirine-augite, aenigmatite, alkaline amphiboles, astrophyllite, natrolite, and ferripyrophyllite. Three generations of lamprophyllite-group minerals can be distinguished based on their morphological features. The new mineral fluorbarytolamprophyllite is the F-dominant analogue of barytolamprophyllite and the Ba-dominant analogue of fluorlamprophyllite. It represents the early generation of lamprophyllite-group minerals (LGM) and forms brown prismatic crystals, their radial aggregates and marginal zones of fluorlamprophyllite crystals. The lustre of the new mineral is vitreous to pearly. Mohs hardness is 2.5. Dcalc is 3.662 g/cm3. The mineral is optically biaxial (+), α = 1.738(3), β = 1.745(4), γ = 1.777(4) (589 nm), 2 V (meas.) = 55(5)°, 2 V (calc.) = 51°. The chemical composition (electron microprobe, water determined by TGA, wt.%) is: Na2O 10.01, K2O 2.65, MgO 0.43, CaO 0.64, SrO 5.59, BaO 16.23, MnO 0.50, FeO 4.44, Al2O3 0.08, TiO2 27.31, ZrO2 0.22, Nb2O5 0.91, Ta2O5 0.15, SiO2 29.35, F 2.41, H2O 0.26, total 101.18. The empirical formula based on 18 anions is (Ba0.865Sr0.44K0.46Na0.26)Σ2.025(Na2.38Ca0.09Fe0.47Mn0.06)Σ3.00(Ti2.79Mg0.09Fe0.035Nb0.06Zr0.015Ta0.01)Σ3.00(Si3.99Al0.01)Σ4.00 O16[F1.04O0.72(OH)0.24]Σ2.00. The IR spectrum is given. The strongest lines of the powder X-ray diffraction pattern are [d, Å (I,%) (hkl)]: 9.692 (40) (200), 3.726 (59) (−311), 3.414 (67) (311), 3.230 (96) (300), 3.013 (53) (−5–11), 2.780 (100) (221), 2.662 (52) (002). The crystal structure has been solved and refined to R1 = 5.07 based on 2897 independent reflections with I > 2σ(I). Fluorbarytolamprophyllite is monoclinic, space group C2/m. The unit-cell parameters refined from the powder data are: a = 19.520(5), b = 7.0995(17), c = 5.3896(20) Å, β = 96.657(23)°; V = 741.86(24) Å3, Z = 2. At Niva and Mokhnatye Roga, most of the LGM were formed during magmatic stage of syenite crystallization from alkaline melt enriched in Na, K, Ba, Fe, Ti and F. Compositional variation of the examined LGM and their textural relations show changes in the Sr/Ba ratio in the parental melt and increasing activity of F and Ba in derivatives fluids as the main factors driving this variation.


Fluorbarytolamprophyllite New mineral Heterophyllosilicate Lamprophyllite group Agpaitic syenite Kola alkaline province 



Authors thank Dr. A.R. Chakhmouradian, an anonymous reviewer for useful comments and suggestions, and Dr. Leonid Danyushevsky for handling the manuscript. This study was supported by the Russian Foundation for Basic Research (grant no. 16-35-00537-mol-a), Foundation of the President of the Russian Federation, grant No. MK-8990.2016.5 (in the part of single crystal X-ray analysis) as well as Russian Science Foundation, grant no. 14-17-00048 (in part of IR spectroscopy and thermal analysis).

Supplementary material

710_2019_664_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 15 kb)


  1. Akimenko MI, Aksenov SM, Sorokhtina NV, Kogarko LN, Kononkova NN, Rastsvetaeva RK, Rozenberg KA (2015) Variations in the chemical composition of lamprophyllite group minerals and the crystal structure of fluorine-rich barytolamprophyllite from new peralkaline dyke. Crystallography Reports 60:821–830Google Scholar
  2. Akimenko MI, Kogarko LN, Sorokhtina NV, Kononkova NN, Mamontov VP (2014) A new occurrence of alkaline magmatism on the Kola Peninsula: an agpaitic dyke in the Kandalaksha region. Dokl Earth Sci 458:1125–1128Google Scholar
  3. Aksenov SM, Rastsvetaeva RK, Chukanov NV (2014) The crystal structure of emmerichite Ва2(Na,Mg)3Fe3+Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral. Z Kristallogr 229(1):1–7Google Scholar
  4. Andrade MB, Yang H, Downs RT Färber G, Contreira Filho RR, Evans SH, Loehn CW, Schumer BN (2017) Fluorlamprophyllite, Na3(SrNa)Ti3(Si2O7)2O2F2, a new mineral from Poços de Caldas alkaline massif, Morro do Serrote, Minas Gerais, Brazil. Mineral Mag 2017.
  5. Arzamastsev AA, Bea F, Glaznev VN, Arzamastseva LV, Montero P (2001) Kola alkaline province in the Paleozoic: an estimate of the composition of the primary mantle melts and magmogenesis conditions. Ros Zhurn Nauk O Zemle 3(1):1–35Google Scholar
  6. Arzamastsev AA, Belyatskiy BV, Arzamastseva LV (2000) Agpaitic magmatism in the northeastern Baltic Shield: a study of the Niva intrusion, Kola Peninsula, Russia. Lithos 51:27–46Google Scholar
  7. Arzamastsev AA, Chashchin VV, Arzamastseva LV (1999) The Niva Pluton: a new occurrence of the agpaitic magmatism in the Kola alkaline province. Doklady Earth Sci Sect 365(3):305–308Google Scholar
  8. Arzamastsev AA, Fedorov ZA, Arzamastseva LV (2009) Dyke magmatism of the north-eastern part of the Baltic Shield. Nauka, St. Petersburg, 383 ppGoogle Scholar
  9. Azarova YV (2004) Genesis and minerals typochemistry of number lamprophyllite-barytolamprophyllite from the lujaurite-malignite complex of Khibiny massif. New Data on Minerals 39: 66–72 (in Russian)Google Scholar
  10. Barrer RM (1982) Hydrothermal Chemistry of Zeolites. Academic Press, London, 420 ppGoogle Scholar
  11. Belokoneva EL, Topnikova AP, Aksenov SM (2015) Topolology-symmetry law of structure of natural titanosilicate micas and related heterophyllosilicates based on the extended OD theory: structure prediction. Crystallogr Rep 60(1):1–15Google Scholar
  12. Brandenburg K, Putz H (2005) DIAMOND Version 3. Crystal Impact GbR, BonnGoogle Scholar
  13. Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Cryst 41:244–247Google Scholar
  14. Brown ID, Shannon RD (1973) Empirical bond strength–bond lengths curves for oxides. Acta Cryst 29:266–282Google Scholar
  15. Chakhmouradian AR, Mitchell RH (1999) Primary, agpaitic and deutric stages in the evolution of accessory Sr, REE, Ba and Nb-mineralization in nepheline-syenite pegmatites at pegmatite peak, Bearpaw Mts, Montana. Mineral Petrol 67:85–110Google Scholar
  16. Chakhmouradian AR, Mitchell RH (2002) The mineralogy of Ba- and Zr-rich alkaline pegmatites from Gordon Butte, Crazy mountains (Montana, USA): comparisons between potassic and sodic agpaitic pegmatites. Contrib Mineral Petrol 143:93–114Google Scholar
  17. Chukanov NV (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht–Heidelberg–New York–London 1716Google Scholar
  18. Chukanov NV, Moiseev MM, Pekov IV, Lazebnik KA, Rastsvetaeva RK, Zayakina NV, Ferraris G, Ivaldi G (2004) Nabalamprophyllite Ва(Na,Ba){Na3Ti[Ti2O2Si4O14](OH,F)2}, a new layered lamprophyllite-group mineral from the alkaline-ultrabasicmassifs Inagli and Kovdor, Russia. Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva 133(1):59–72 (in Russian)Google Scholar
  19. Chukanov NV, Pekov IV, Rastsvetaeva RK, Aksenov SM, Zadov AE, Van KV, Blass G, Schüller W, Ternes B (2012) Lileyite, Ва2(Na,Fe,Ca)3MgTi2(Si2O7)2O2F2, a new lamprophyllite group mineral from the Eifel volcanic area, Germany. Eur J Mineral 24(1):181–188Google Scholar
  20. Chukanov NV, Rastsvetaeva RK, Aksenov SM, Blass G, Pekov IV, Belakovskiy DI, Tschörtner J, Schüller W, Ternes B (2014): Emmerichite, Ва2Na(Na,Fe2+)2(Fe3+,Mg)Ti2(Si2O7)2O2F2, a new lamprophyllite-group mineral from the Eifel paleovolcanic region, Germany. New Data on Minerals 49:5 G 13 (in Russian)Google Scholar
  21. Chukanov NV, Rastsvetaeva RK, Britvin SN, Virus AA, Belakovskiy DI, Pekov IV, Aksenov SM, Ternes B (2011) Schüllerite, Ba2Na(Mn,Ca)(Fe3+,Mg,Fe2+)2Ti2(Si2O7)2(O,F)4, a new mineral species from the Eifel volcanic district, Germany. Geology of Ore Deposits 53:767–774Google Scholar
  22. Daly JS, Balagansky VV, Timmerman MJ, Whitehouse MJ (2012) The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian. In book: European Lithosphere Dynamics, Chapter: Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. Publisher: Geological Society of London, 579–597Google Scholar
  23. Dawson JB (1998) Peralkaline nephelinite-natrocarbonatite relationships at Ol Doinyo Lengai, Tanzania. J Petrol 39:2077–2094Google Scholar
  24. Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98:55–76Google Scholar
  25. Feklichev VG (1989) Diagnostic Constants of Minerals. Nedra, Moscow (in Russian)Google Scholar
  26. Ferraris G, Ivaldi G, Khomyakov AP, Soboleva SV, Belluso E, Pavese A (1996) Nafertisite, a layered titanosilicate member of a polysomatic series including mica. Eur J Mineral 8:241–249Google Scholar
  27. Ferraris G, Gula A (2005) Polysomatic aspects of microporous minerals - Heterophyllosilicates, palysepioles and rhodesite-related structures. In G. Ferraris and S. Merlino (Eds.). Micro- and Mesoporous Mineral Phases. Rev Mineral Geochem 57:69–104Google Scholar
  28. Gerasimovskii VI, Volkov VP, Kogarko LN, Polyakov AI, Saprykina TV, Balashov YA (1966) Geochemistry of the Lovozero alkaline massif, Moscow, 394 pp (in Russian)Google Scholar
  29. Haggerty SE, Anthony NM (1983) Strontian-loparite and strontio-chevkinite: Two new minerals in rheomorphic fenites from the Paraná Basin carbonatites, South America. Contrib Mineral Petrol 84:365–381Google Scholar
  30. Ibers JA, Hamilton WC (1974) International tables for X-ray crystallography. Vol. IV. The Kynoch Press, BirminghamGoogle Scholar
  31. Ivanyuk GY, Yakovenchuk VN, Pakhomovskii YA (2002) Kovdor. Laplandia Minerals. Apatity, 326 pp (in Russian)Google Scholar
  32. Johnsen O, Nielsen TFD, Ronsbo JG (1994) Lamprophyllite and barytolamprophyllitefrom the Tertiary Gardiner complex, East Greenland. Neues Jahrbuch für mineralogie 7:328–336Google Scholar
  33. Kampf AR, Roberts AC, Venance KE, Dunning GE, Walstrom RE (2011) Ferroericssonite, the Fe2+ analogue of ericssonite, from Eastern Fresno County, California, U.S.A. Can Mineral 49:587–594Google Scholar
  34. Kapustin YL (1973) About the new findings of barytolamprophyllite and the chemical formula of lamprophyllite. Reports of the Academy of Sciences 210:921–924 (in Russian)Google Scholar
  35. Kaur G, Mitchell RH (2013) Mineralogy of the P2-West “Kimberlite”, Wajrakarur kimberlite field, Andhra Pradesh, India: kimberlite or lamproite. Mineral Mag 77(8):3175–3196Google Scholar
  36. Kogarko LN, Lahaye Y, Brey G, Foulger PGR, Jurdy DM (2009) Plume-related mantle source of super-large rare metal deposits from the Lovozero and Khibina massifs on the Kola Peninsula, Eastern part of Baltic Shield: Sr, Nd and Hf isotope systematics Plates, Plumes, and Planetary Processes. The Geological Society of America. Special Paper 430–999Google Scholar
  37. Konev AA, Vorobyev EI, Labeznik KA (1996) Mineralogy of the Murun alkaline massif. Publishing house of the Siberian Branch of the Russian Acad. Sci., Novosibirsk, 222 pp (in Russian)Google Scholar
  38. Kostyleva-Labuntsova EE, Borutsky BE, Sokolova MN, Shlyukova Z, Dorfman MD, Dudkin OB, Kozyreva LV (1978) Mineralogy of the Khibiny Massif. Nauka, Moscow, pp 228–586 (in Russian)Google Scholar
  39. Krivovichev SV, Armbruster T, Yakovenchuk VN, Pakhomovsky YA, Men’shikov YP (2003) Crystal structures of lamprophyllite-2M and lamprophyllite-2O from the Lovozero alkaline massif, Kola peninsula, Russia. Eur J Mineral 15:711–718Google Scholar
  40. Kukharenko AA, Orlova MP, Bulakh AG (1965) The Caledonian Complex of ultrabasic, alkaline rocks, and carbonatites of Kola Peninsula and Northern Karelia, vol 772. Nedra, Moscow (in Russian)Google Scholar
  41. Labeznik KA, Zayakina HB, Paukevich HS (1998) Without strontium lamprophyllite - a new member of the lamprophyllite group. Reports of the Academy of Sciences 361:799–802 (in Russian)Google Scholar
  42. March JS (1975) Aenigmatite stability in silica-undersaturated rocks. Contrib Mineral Petrol 50:135–144Google Scholar
  43. Moiseev MM, Chukanov NV (2006) Mineralogy of alkaline pegmatites and hydrothermalites of the Kovdor massif. New Data on Minerals 41:56–70Google Scholar
  44. Marks MAW, Markl G (2017) A global review on agpaitic rocks. Earth Sci Rev 173:229–258Google Scholar
  45. Moore PB (1971) Ericssonite and orthoericssonite. Two new members of the lamprophyllite group from Långban, Sweden. Lithos 4:137–145Google Scholar
  46. Peng TC, Chang CH (1965) New varieties of lamprophyllite–barytolamprophyllite and orthorhombic lamprophyllite. Sci Sinica 14(12):1827–1840Google Scholar
  47. Peng Z, Zhang J, Shu J (1984) The crystal structure of barytolamprophyllite. Kexue Tongbao 29:237–241Google Scholar
  48. Petřiček V, Dušek M, Palatinus L (2006) Jana2006: Structure determination software programs. Institute of Physics, PrahaGoogle Scholar
  49. Rastsvetaeva RK, Aksenov SM (2011) Crystal Chemistry of Silicates with Three-Layer TOT and HOH Modules of Layered, Chainlike, and Mixed Types. Crystallogr Rep 56(6):910–934Google Scholar
  50. Rastsvetaeva RK, Aksenov SM, Chukanov NV (2011) Crystal structure of schüllerite, a new mineral of the heterophyllosilicate family. Dokl Chem 437:90–94Google Scholar
  51. Rastsvetaeva RK, Aksenov SM, Chukanov NV, Lykova IS, Verin IA (2014) Iron-rich schullerite from Kahlenberg (Eifel, Germany): crystal structure and relation to lamprophyllite group minerals. Crystallography Reports 59(6):867–873Google Scholar
  52. Rastsvetaeva RK, Chukanov NV, Aksenov SM (2016) The crystal chemistry of lamprophyllite related minerals. Eur J Mineral 28:915–930Google Scholar
  53. Rastsvetaeva RK, Dorfman MD (1995) Crystal structure of Ba-lamprophyllite in the isomorphous lamprophyllite-barytolamprophyllite series. Crystallogr Rep 40:951–954Google Scholar
  54. Rastsvetaeva RK, Evsyunin VG, Konev AA (1995) Crystal structure of K-barytolamprophyllite. Crystallography Reports 40:472–474Google Scholar
  55. Rastsvetaeva RK, Sokolova MN, Gusev AI (1990) Refined crystal structure of lamprophyllite. Mineral J 5:25–28 (in Russian)Google Scholar
  56. Saf’yanov YN, Vasil’eva NO, Golovachev VP, Kuz’min EA, Belov NV (1983) Crystal structure of lamprophyllite. Dokl Akad Nauk SSSR 269:117–120 (in Russian)Google Scholar
  57. Sokolova E (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. Can Mineral 44:1273–1333Google Scholar
  58. Sokolova E, Cámara F (2008) From structure topology to chemical composition. III. Titanium silicates: The crystal chemistry of barytolamprophyllite. Can Mineral 46:403–412Google Scholar
  59. Sokolova E, Cámara F (2016) From structure topology to chemical composition. XXI. Understanding the crystal chemistry of barium in TS-block minerals. Can Mineral 54:79–95Google Scholar
  60. Sokolova E, Cámara F (2017) The seidozerite supergroup of TS-block minerals: nomenclature and classification, with change of the following names: rinkite to rinkite-(Ce), mosandrite to mosandrite-(Ce), hainite to hainite-(Y) and innelite-1T to innelite-1A. Mineral Mag.
  61. Ulbrich MNC (1993) Mineralogy of nepheline syenites from the Pocos de Caldas alkaline massif, SE Brazil: chemistry, X-ray data and microtextures of feldspars. Rev Bras Geosci 23(4):388–399Google Scholar
  62. Vlasov KA, Kuzmenko MV, Eskova EM (1966) The Lovozero Alkali Massif. Editorial Board of the Academy of Sciences of the USSR Moscow 618 (in Russian)Google Scholar
  63. Wight Q, Chao G (1995) Mont Saint-Hiliare revisited. Rocks and Minerals 70 (pg. 90–103):131–138Google Scholar
  64. Zaitsev VA (2005) Numerical dependence of the unit-cell parameters of minerals of the lamprophyllite group on the cationic composition in the interlayer position. Crystallography Reports 50(3):379–381Google Scholar
  65. Zaitsev VA, Kogarko LN (2002) The compositions of minerals of the lamprophyllite group from alkaline massifs worldwide. Geochem Int 40(4):313–322Google Scholar
  66. Zhirov DV (2015) Geodynamic Reconstruction of the Palaeozoic Kola Alkaline Large Igneous Province. Book of XXXII International Conference: Alkaline Alkaline Magmatism of the Earth Magmatism of the Earth and related strategic metal deposits 148Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Maria I. Filina
    • 1
  • Sergey M. Aksenov
    • 2
    • 3
    Email author
  • Natalia V. Sorokhtina
    • 1
  • Nikita V. Chukanov
    • 4
  • Natalia N. Kononkova
    • 1
  • Dmitriy I. Belakovskiy
    • 5
  • Sergey N. Britvin
    • 6
  • Lia N. Kogarko
    • 1
  • Alexandr D. Chervonnyi
    • 5
  • Ramiza K. Rastsvetaeva
    • 2
  1. 1.Vernadsky InstituteRussian Academy of SciencesMoscowRussia
  2. 2.FSRC “Crystallography and Photonics”Russian Academy of SciencesMoscowRussia
  3. 3.Department of Civil & Environmental Engineering & Earth SciencesUniversity of Notre DameNotre DameUSA
  4. 4.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussia
  5. 5.Fersman Mineralogical MuseumRussian Academy of SciencesMoscowRussia
  6. 6.Department of Crystallography, Institute of Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations