Mineralogy and Petrology

, Volume 113, Issue 4, pp 527–532 | Cite as

Orthocuproplatinum, Pt3Cu, a new mineral from the Lubero region, North Kivu, Democratic Republic of the Congo

  • Alexandre R. CabralEmail author
  • Roman Skála
  • Anna Vymazalová
  • Jaroslav Maixner
  • Chris J. Stanley
  • Bernd Lehmann
  • Jacques Jedwab
Original Paper


Orthocuproplatinum, Pt3Cu, is a new mineral from the Lubero region of North Kivu, Democratic Republic of the Congo. The mineral, which has a synthetic analogue, occurs as a 1.5-mm-long alluvial grain in a heavy-mineral concentrate, together with the holotype specimen of kitagohaite, Pt7Cu. The grain of orthocuproplatinum has a rim of hongshiite, PtCu, and abundant inclusions of calcite. Opaque and metallic, orthocuproplatinum has a whitish colour in reflected light and slightly perceptible anisotropy. The crystal structure of orthocuproplatinum is orthorhombic, space group Cmmm. Its unit-cell parameters: a = 7.681(1) Å; b = 5.4318(8) Å; c = 2.7502(4) Å; V = 114.74(3) Å3; Z = 2. The calculated density is 17.866 g cm−3. The strongest diffraction lines are [d in Å(I)]: 2.337 (11), 2.236 (100), 2.217 (97), 1.932 (61), 1.920 (30), 1.362 (36), 1.169 (24), 1.161 (23). The Vickers hardness is 243 kg mm−2 (VHN25), corresponding to a Mohs hardness of 4. The empirical formula of orthocuproplatinum, calculated from a mean value of 12 electron-probe microanalyses that gave 12.9 wt% Cu and 87.3 wt% Pt, is Pt2.76Cu1.24 on the basis of 4 atoms.


Orthocuproplatinum Lubero North Kivu Democratic Republic of the Congo 



The Central Laboratories of the University of Chemistry and Technology, Prague, are thanked for providing access to their microdiffractometer. The authors are indebted to Ulf Hålenius and Ritsuro Miyawaki, the former and present Chairman of the Commission on New Minerals, Nomenclature and Classification (CNMNC) of the International Mineralogical Association, respectively, and the CNMNC members, for their thoughtful comments on the data submitted to the commission. Constructive reviews by Louis Cabri and John Bowles, as well as editorial comments by associate editor Luca Bindi, are sincerely appreciated. This work was supported by the Grant Agency of the Czech Republic (project No. 18-15390S to AV). The institutional support RVO 67985831 of the Institute of Geology of the Czech Academy of Sciences is gratefully acknowledged.


  1. Abe T, Sundman B, Onodera H (2006) Thermodynamic assessment of the Cu–Pt system. J Phase Equilib Diffus 27:5–13CrossRefGoogle Scholar
  2. Aiglsperger T, Proenza JA, Font-Bardia M, Baurier-Aymat S, Galí S, Lewis JF, Longo F (2017) Supergene neoformation of Pt–Ir–Fe–Ni alloys: multistage grains explain nugget formation in Ni-laterites. Miner Deposita 52:1069–1083CrossRefGoogle Scholar
  3. Augé T, Legendre O (1992) Pt–Fe nuggets from alluvial deposits in eastern Madagascar. Can Mineral 30:983–1004Google Scholar
  4. Bowles JFW (1986) The development of platinum-group minerals in laterites. Econ Geol 81:1278–1285CrossRefGoogle Scholar
  5. Bowles JFW, Suárez S, Prichard HM, Fisher P (2018) The mineralogy, geochemistry and genesis of the alluvial platinum-group minerals of the Freetown Layered Complex, Sierra Leone. Mineral Mag 82(S1):S223–S246CrossRefGoogle Scholar
  6. Cabral AR, Skála R, Vymazalová A, Kallistová A, Lehmann B, Jedwab J, Sidorinová T (2014) Kitagohaite, Pt7Cu, a new mineral from the Lubero region, North Kivu, Democratic Republic of the Congo. Mineral Mag 78:739–745CrossRefGoogle Scholar
  7. Cabral AR, Lehmann B, Jedwab J (2016) A platinum–copper nugget rich in calcite: evidence for hydrothermal Pt3Cu. Can Mineral 54:401–407CrossRefGoogle Scholar
  8. Cabral AR, Tupinambá M, Zeh A, Lehmann B, Wiedenbeck M, Brauns M, Kwitko-Ribeiro R (2017) Platiniferous gold–tourmaline aggregates in the gold–palladium belt of Minas Gerais, Brazil: implications for regional boron metasomatism. Miner Petrol 111:807–819CrossRefGoogle Scholar
  9. Cabral AR, Skála R, Vymazalová A, Maixner J, Stanley CJ, Lehmann B, Jedwab J (2019) Orthocuproplatinum, IMA 2018-124. CNMNC Newsletter 47, February 2019, p 202. Eur J Mineral 31:199–204Google Scholar
  10. Criddle AJ, Stanley CJ (1993) Quantitative data file for ore minerals. Chapman & Hall, LondonCrossRefGoogle Scholar
  11. Hussak E (1904) Über das Vorkommen von Palladium und Platin in Brasilien. Sitzungsberichte der mathematisch-naturwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften 113:379–466Google Scholar
  12. Jedwab J, Cervelle B, Gouet G, Hubaut X, Piret P (1992) The new platinum selenide luberoite Pt5Se4 from the Lubero region (Kivu Province, Zaire). Eur J Mineral 4:683–692CrossRefGoogle Scholar
  13. Korobeinikov AF, Mitrofanov GL, Nemerov VR, Kolpakova NA (1998) Nontraditional gold–platinum deposits in East Siberia. Geol Geofiz 39:432–444Google Scholar
  14. Krstić S, Tarkian M (1997) Platinum-group minerals in gold-bearing placers associated with the Veluće ophiolite complex, Yugoslavia. Can Mineral 35:1–21Google Scholar
  15. Kwitko R, Cabral AR, Lehmann B, Laflamme JHG, Cabri LJ, Criddle AJ, Galbiatti HF (2002) Hongshiite (PtCu) from itabirite-hosted Au–Pd–Pt mineralization (jacutinga), Itabira district, Minas Gerais, Brazil. Can Mineral 40:711–723CrossRefGoogle Scholar
  16. Lampadius WA, Plattner GP (1833) Ueber das gemeinschaftliche Vorkommen des Platinerzes und des gediegenen Silbergoldes in einem Gangfossile aus Brasilien. Journal für technische und ökonomische Chemie 18:353–365Google Scholar
  17. Laverov NP, Distler VV, Mitrofanov GL, Nemerov VK, Kovalenker VA, Mokhov AV, Semeikina LK, Yudovskaya MA (1997) Platinum and other native metals in ores of Sukhoi Log gold deposit. Dokl Akad Nauk 355:664–668Google Scholar
  18. Leake RC, Bland DJ, Styles MT, Cameron DG (1991) Internal structure of Au–Pd–Pt grains from south Devon, England, in relation to low-temperature transport and deposition. Trans Inst Min Metal (Sect B: Appl Earth Sci) 100:B159–B178Google Scholar
  19. Malitch KN, Thalhammer OAR (2002) Pt–Fe nuggets derived from clinopyroxenite–dunite massifs, Russia: a structural, compositional and osmium-isotope study. Can Mineral 40:395–418CrossRefGoogle Scholar
  20. McDonald I, Vaughan DJ, Tredoux M (1995) Platinum mineralization in quartz veins near Naboomspruit, central Transvaal. South Afr J Geol 98:168–175Google Scholar
  21. McDonald I, Ohnenstetter D, Rowe JP, Tredoux M, Pattrick RAD, Vaughan DJ (1999) Platinum precipitation in the Waterberg deposit, Naboomspruit, South Africa. South Afr J Geol 102:184–191Google Scholar
  22. Miida R, Watanabe D (1974) Electron microscope and diffraction study on the ordered structures of platinum-rich copper–platinum alloys. J Appl Crystallogr 7:50–59CrossRefGoogle Scholar
  23. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276CrossRefGoogle Scholar
  24. Mshumi C, Lang CI, Richey LR, Erb KC, Rosenbrock CW, Nelson LJ, Vanfleet RR, Stokes HT, Campbell BJ, Hart GLW (2014) Revisiting the CuPt3 prototype and the L13 structure. Acta Mater 73:326–336CrossRefGoogle Scholar
  25. Nazimova YV, Zaytsev VP, Petrov SV (2011) The Galmoenan massif, Kamchatka, Russia: geology, PGE mineralization, applied mineralogy and beneficiation. Can Mineral 49:1433–1453CrossRefGoogle Scholar
  26. Schneider A, Esch U (1944) Das System Kupfer–Platin. Z Elektrochem 50:290–301Google Scholar
  27. Shepherd TJ, Bouch JE, Gunn AG, McKervey JA, Naden J, Scrivener RC, Styles MT, Large DE (2005) Permo-Triassic unconformity-related Au–Pd mineralisation, South Devon, UK: new insights and the European perspective. Miner Deposita 40:24–44Google Scholar
  28. Simon G, Kesler SE, Essene EJ (1997) Phase relations among selenides, sulfides, tellurides, and oxides: II, applications to selenide-bearing ore deposits. Econ Geol 92:468–484CrossRefGoogle Scholar
  29. Tang Y-C (1951) A cubic structure for the phase Pt3Cu. Acta Crystallogr 4:377–378CrossRefGoogle Scholar
  30. Tolstykh ND, Sidorov EG, Laajoki KVO, Krivenko AP, Podlipskiy M (2000) The association of platinum-group minerals in placers of the Pustaya river, Kamchatka, Russia. Can Mineral 38:1251–1264CrossRefGoogle Scholar
  31. Tolstykh N, Krivenko A, Sidorov E, Laajoki K, Podlipsky M (2002) Ore mineralogy of PGM placers in Siberia and the Russian Far East. Ore Geol Rev 20:1–25CrossRefGoogle Scholar
  32. Törnroos R, Johanson B, Kojonen K (1998) Alluvial nuggets of platinum-group minerals and alloys from Finnish Lapland. Geol Surv Finland Spec Pap 26:63–64Google Scholar
  33. Wagner PA (1929) The platinum deposits and mines of South Africa. Oliver & Boyd, EdinburghGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Alexandre R. Cabral
    • 1
    • 2
    Email author
  • Roman Skála
    • 3
  • Anna Vymazalová
    • 4
  • Jaroslav Maixner
    • 5
  • Chris J. Stanley
    • 6
  • Bernd Lehmann
    • 7
  • Jacques Jedwab
    • 8
  1. 1.Centro de Pesquisas Professor Manoel Teixeira da Costa (CPMTC), Instituto de GeociênciasUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)Belo HorizonteBrazil
  3. 3.Institute of Geology of the Czech Academy of SciencesPraha 6Czech Republic
  4. 4.Czech Geological SurveyPraha 5Czech Republic
  5. 5.Central LaboratoriesUniversity of Chemistry and TechnologyPraha 6Czech Republic
  6. 6.Department of Earth SciencesNatural History MuseumLondonUK
  7. 7.Technische Universität ClausthalClausthal-ZellerfeldGermany
  8. 8.Université Libre de BruxellesBrusselsBelgium

Personalised recommendations